Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-x\right)^{2}-6\left(-x\right)+9=15-x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-x-3\right)^{2}.
x^{2}-6\left(-x\right)+9=15-x^{2}
Calculate -x to the power of 2 and get x^{2}.
x^{2}+6x+9=15-x^{2}
Multiply -6 and -1 to get 6.
x^{2}+6x+9-15=-x^{2}
Subtract 15 from both sides.
x^{2}+6x-6=-x^{2}
Subtract 15 from 9 to get -6.
x^{2}+6x-6+x^{2}=0
Add x^{2} to both sides.
2x^{2}+6x-6=0
Combine x^{2} and x^{2} to get 2x^{2}.
x=\frac{-6±\sqrt{6^{2}-4\times 2\left(-6\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 6 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 2\left(-6\right)}}{2\times 2}
Square 6.
x=\frac{-6±\sqrt{36-8\left(-6\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-6±\sqrt{36+48}}{2\times 2}
Multiply -8 times -6.
x=\frac{-6±\sqrt{84}}{2\times 2}
Add 36 to 48.
x=\frac{-6±2\sqrt{21}}{2\times 2}
Take the square root of 84.
x=\frac{-6±2\sqrt{21}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{21}-6}{4}
Now solve the equation x=\frac{-6±2\sqrt{21}}{4} when ± is plus. Add -6 to 2\sqrt{21}.
x=\frac{\sqrt{21}-3}{2}
Divide -6+2\sqrt{21} by 4.
x=\frac{-2\sqrt{21}-6}{4}
Now solve the equation x=\frac{-6±2\sqrt{21}}{4} when ± is minus. Subtract 2\sqrt{21} from -6.
x=\frac{-\sqrt{21}-3}{2}
Divide -6-2\sqrt{21} by 4.
x=\frac{\sqrt{21}-3}{2} x=\frac{-\sqrt{21}-3}{2}
The equation is now solved.
\left(-x\right)^{2}-6\left(-x\right)+9=15-x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-x-3\right)^{2}.
x^{2}-6\left(-x\right)+9=15-x^{2}
Calculate -x to the power of 2 and get x^{2}.
x^{2}+6x+9=15-x^{2}
Multiply -6 and -1 to get 6.
x^{2}+6x+9+x^{2}=15
Add x^{2} to both sides.
2x^{2}+6x+9=15
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+6x=15-9
Subtract 9 from both sides.
2x^{2}+6x=6
Subtract 9 from 15 to get 6.
\frac{2x^{2}+6x}{2}=\frac{6}{2}
Divide both sides by 2.
x^{2}+\frac{6}{2}x=\frac{6}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+3x=\frac{6}{2}
Divide 6 by 2.
x^{2}+3x=3
Divide 6 by 2.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=3+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=3+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{21}{4}
Add 3 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{21}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{21}}{2} x+\frac{3}{2}=-\frac{\sqrt{21}}{2}
Simplify.
x=\frac{\sqrt{21}-3}{2} x=\frac{-\sqrt{21}-3}{2}
Subtract \frac{3}{2} from both sides of the equation.