Evaluate
16\left(x^{2}-5\right)
Expand
16x^{2}-80
Graph
Share
Copied to clipboard
\left(\left(-x\right)^{2}-2\left(-x\right)+1\right)\left(x-1\right)^{2}-\left(x+3\right)^{2}\left(x-3\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-x-1\right)^{2}.
\left(x^{2}-2\left(-x\right)+1\right)\left(x-1\right)^{2}-\left(x+3\right)^{2}\left(x-3\right)^{2}
Calculate -x to the power of 2 and get x^{2}.
\left(x^{2}+2x+1\right)\left(x-1\right)^{2}-\left(x+3\right)^{2}\left(x-3\right)^{2}
Multiply -2 and -1 to get 2.
\left(x^{2}+2x+1\right)\left(x^{2}-2x+1\right)-\left(x+3\right)^{2}\left(x-3\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{4}-2x^{2}+1-\left(x+3\right)^{2}\left(x-3\right)^{2}
Use the distributive property to multiply x^{2}+2x+1 by x^{2}-2x+1 and combine like terms.
x^{4}-2x^{2}+1-\left(x^{2}+6x+9\right)\left(x-3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{4}-2x^{2}+1-\left(x^{2}+6x+9\right)\left(x^{2}-6x+9\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{4}-2x^{2}+1-\left(x^{4}-18x^{2}+81\right)
Use the distributive property to multiply x^{2}+6x+9 by x^{2}-6x+9 and combine like terms.
x^{4}-2x^{2}+1-x^{4}+18x^{2}-81
To find the opposite of x^{4}-18x^{2}+81, find the opposite of each term.
-2x^{2}+1+18x^{2}-81
Combine x^{4} and -x^{4} to get 0.
16x^{2}+1-81
Combine -2x^{2} and 18x^{2} to get 16x^{2}.
16x^{2}-80
Subtract 81 from 1 to get -80.
\left(\left(-x\right)^{2}-2\left(-x\right)+1\right)\left(x-1\right)^{2}-\left(x+3\right)^{2}\left(x-3\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-x-1\right)^{2}.
\left(x^{2}-2\left(-x\right)+1\right)\left(x-1\right)^{2}-\left(x+3\right)^{2}\left(x-3\right)^{2}
Calculate -x to the power of 2 and get x^{2}.
\left(x^{2}+2x+1\right)\left(x-1\right)^{2}-\left(x+3\right)^{2}\left(x-3\right)^{2}
Multiply -2 and -1 to get 2.
\left(x^{2}+2x+1\right)\left(x^{2}-2x+1\right)-\left(x+3\right)^{2}\left(x-3\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{4}-2x^{2}+1-\left(x+3\right)^{2}\left(x-3\right)^{2}
Use the distributive property to multiply x^{2}+2x+1 by x^{2}-2x+1 and combine like terms.
x^{4}-2x^{2}+1-\left(x^{2}+6x+9\right)\left(x-3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{4}-2x^{2}+1-\left(x^{2}+6x+9\right)\left(x^{2}-6x+9\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{4}-2x^{2}+1-\left(x^{4}-18x^{2}+81\right)
Use the distributive property to multiply x^{2}+6x+9 by x^{2}-6x+9 and combine like terms.
x^{4}-2x^{2}+1-x^{4}+18x^{2}-81
To find the opposite of x^{4}-18x^{2}+81, find the opposite of each term.
-2x^{2}+1+18x^{2}-81
Combine x^{4} and -x^{4} to get 0.
16x^{2}+1-81
Combine -2x^{2} and 18x^{2} to get 16x^{2}.
16x^{2}-80
Subtract 81 from 1 to get -80.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}