Evaluate
-x^{8}
Expand
-x^{8}
Graph
Share
Copied to clipboard
\left(-x^{4}\right)^{2}-\frac{x^{10}}{x^{2}}-\left(-x\right)^{3}\left(-x^{5}\right)
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
\left(-x^{4}\right)^{2}-x^{8}-\left(-x\right)^{3}\left(-x^{5}\right)
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 2 from 10 to get 8.
\left(x^{4}\right)^{2}-x^{8}-\left(-x\right)^{3}\left(-x^{5}\right)
Calculate -x^{4} to the power of 2 and get \left(x^{4}\right)^{2}.
x^{8}-x^{8}-\left(-x\right)^{3}\left(-x^{5}\right)
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
0-\left(-x\right)^{3}\left(-x^{5}\right)
Subtract x^{8} from x^{8} to get 0.
0-\left(-1\right)^{3}x^{3}\left(-1\right)x^{5}
Expand \left(-x\right)^{3}.
0-\left(-x^{3}\left(-1\right)x^{5}\right)
Calculate -1 to the power of 3 and get -1.
0+x^{3}\left(-1\right)x^{5}
Multiply -1 and -1 to get 1.
0+x^{8}\left(-1\right)
To multiply powers of the same base, add their exponents. Add 3 and 5 to get 8.
x^{8}\left(-1\right)
Anything plus zero gives itself.
\left(-x^{4}\right)^{2}-\frac{x^{10}}{x^{2}}-\left(-x\right)^{3}\left(-x^{5}\right)
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
\left(-x^{4}\right)^{2}-x^{8}-\left(-x\right)^{3}\left(-x^{5}\right)
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 2 from 10 to get 8.
\left(x^{4}\right)^{2}-x^{8}-\left(-x\right)^{3}\left(-x^{5}\right)
Calculate -x^{4} to the power of 2 and get \left(x^{4}\right)^{2}.
x^{8}-x^{8}-\left(-x\right)^{3}\left(-x^{5}\right)
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
0-\left(-x\right)^{3}\left(-x^{5}\right)
Subtract x^{8} from x^{8} to get 0.
0-\left(-1\right)^{3}x^{3}\left(-1\right)x^{5}
Expand \left(-x\right)^{3}.
0-\left(-x^{3}\left(-1\right)x^{5}\right)
Calculate -1 to the power of 3 and get -1.
0+x^{3}\left(-1\right)x^{5}
Multiply -1 and -1 to get 1.
0+x^{8}\left(-1\right)
To multiply powers of the same base, add their exponents. Add 3 and 5 to get 8.
x^{8}\left(-1\right)
Anything plus zero gives itself.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}