Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Share

\left(-x^{4}\right)^{2}-\frac{x^{10}}{x^{2}}-\left(-x\right)^{3}\left(-x^{5}\right)
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
\left(-x^{4}\right)^{2}-x^{8}-\left(-x\right)^{3}\left(-x^{5}\right)
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 2 from 10 to get 8.
\left(x^{4}\right)^{2}-x^{8}-\left(-x\right)^{3}\left(-x^{5}\right)
Calculate -x^{4} to the power of 2 and get \left(x^{4}\right)^{2}.
x^{8}-x^{8}-\left(-x\right)^{3}\left(-x^{5}\right)
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
0-\left(-x\right)^{3}\left(-x^{5}\right)
Subtract x^{8} from x^{8} to get 0.
0-\left(-1\right)^{3}x^{3}\left(-1\right)x^{5}
Expand \left(-x\right)^{3}.
0-\left(-x^{3}\left(-1\right)x^{5}\right)
Calculate -1 to the power of 3 and get -1.
0+x^{3}\left(-1\right)x^{5}
Multiply -1 and -1 to get 1.
0+x^{8}\left(-1\right)
To multiply powers of the same base, add their exponents. Add 3 and 5 to get 8.
x^{8}\left(-1\right)
Anything plus zero gives itself.
\left(-x^{4}\right)^{2}-\frac{x^{10}}{x^{2}}-\left(-x\right)^{3}\left(-x^{5}\right)
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
\left(-x^{4}\right)^{2}-x^{8}-\left(-x\right)^{3}\left(-x^{5}\right)
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 2 from 10 to get 8.
\left(x^{4}\right)^{2}-x^{8}-\left(-x\right)^{3}\left(-x^{5}\right)
Calculate -x^{4} to the power of 2 and get \left(x^{4}\right)^{2}.
x^{8}-x^{8}-\left(-x\right)^{3}\left(-x^{5}\right)
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
0-\left(-x\right)^{3}\left(-x^{5}\right)
Subtract x^{8} from x^{8} to get 0.
0-\left(-1\right)^{3}x^{3}\left(-1\right)x^{5}
Expand \left(-x\right)^{3}.
0-\left(-x^{3}\left(-1\right)x^{5}\right)
Calculate -1 to the power of 3 and get -1.
0+x^{3}\left(-1\right)x^{5}
Multiply -1 and -1 to get 1.
0+x^{8}\left(-1\right)
To multiply powers of the same base, add their exponents. Add 3 and 5 to get 8.
x^{8}\left(-1\right)
Anything plus zero gives itself.