Evaluate
-8ab
Expand
-8ab
Share
Copied to clipboard
\left(-a\right)^{2}+4\left(-a\right)b+4b^{2}-\left(-a-2b\right)^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(-a+2b\right)^{2}.
a^{2}+4\left(-a\right)b+4b^{2}-\left(-a-2b\right)^{2}
Calculate -a to the power of 2 and get a^{2}.
a^{2}+4\left(-a\right)b+4b^{2}-\left(\left(-a\right)^{2}-4\left(-a\right)b+4b^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(-a-2b\right)^{2}.
a^{2}+4\left(-a\right)b+4b^{2}-\left(a^{2}-4\left(-a\right)b+4b^{2}\right)
Calculate -a to the power of 2 and get a^{2}.
a^{2}+4\left(-a\right)b+4b^{2}-\left(a^{2}+4ab+4b^{2}\right)
Multiply -4 and -1 to get 4.
a^{2}+4\left(-a\right)b+4b^{2}-a^{2}-4ab-4b^{2}
To find the opposite of a^{2}+4ab+4b^{2}, find the opposite of each term.
4\left(-a\right)b+4b^{2}-4ab-4b^{2}
Combine a^{2} and -a^{2} to get 0.
4\left(-a\right)b-4ab
Combine 4b^{2} and -4b^{2} to get 0.
-4ab-4ab
Multiply 4 and -1 to get -4.
-8ab
Combine -4ab and -4ab to get -8ab.
\left(-a\right)^{2}+4\left(-a\right)b+4b^{2}-\left(-a-2b\right)^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(-a+2b\right)^{2}.
a^{2}+4\left(-a\right)b+4b^{2}-\left(-a-2b\right)^{2}
Calculate -a to the power of 2 and get a^{2}.
a^{2}+4\left(-a\right)b+4b^{2}-\left(\left(-a\right)^{2}-4\left(-a\right)b+4b^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(-a-2b\right)^{2}.
a^{2}+4\left(-a\right)b+4b^{2}-\left(a^{2}-4\left(-a\right)b+4b^{2}\right)
Calculate -a to the power of 2 and get a^{2}.
a^{2}+4\left(-a\right)b+4b^{2}-\left(a^{2}+4ab+4b^{2}\right)
Multiply -4 and -1 to get 4.
a^{2}+4\left(-a\right)b+4b^{2}-a^{2}-4ab-4b^{2}
To find the opposite of a^{2}+4ab+4b^{2}, find the opposite of each term.
4\left(-a\right)b+4b^{2}-4ab-4b^{2}
Combine a^{2} and -a^{2} to get 0.
4\left(-a\right)b-4ab
Combine 4b^{2} and -4b^{2} to get 0.
-4ab-4ab
Multiply 4 and -1 to get -4.
-8ab
Combine -4ab and -4ab to get -8ab.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}