Evaluate
36.6
Factor
\frac{3 \cdot 61}{5} = 36\frac{3}{5} = 36.6
Share
Copied to clipboard
\frac{-81\times 4}{2\times 4+1}\times \frac{4}{9}\left(-3\right)+|-\frac{2\times 2+1}{2}|-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Divide -81 by \frac{2\times 4+1}{4} by multiplying -81 by the reciprocal of \frac{2\times 4+1}{4}.
\frac{-324}{2\times 4+1}\times \frac{4}{9}\left(-3\right)+|-\frac{2\times 2+1}{2}|-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Multiply -81 and 4 to get -324.
\frac{-324}{8+1}\times \frac{4}{9}\left(-3\right)+|-\frac{2\times 2+1}{2}|-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Multiply 2 and 4 to get 8.
\frac{-324}{9}\times \frac{4}{9}\left(-3\right)+|-\frac{2\times 2+1}{2}|-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Add 8 and 1 to get 9.
-36\times \frac{4}{9}\left(-3\right)+|-\frac{2\times 2+1}{2}|-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Divide -324 by 9 to get -36.
\frac{-36\times 4}{9}\left(-3\right)+|-\frac{2\times 2+1}{2}|-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Express -36\times \frac{4}{9} as a single fraction.
\frac{-144}{9}\left(-3\right)+|-\frac{2\times 2+1}{2}|-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Multiply -36 and 4 to get -144.
-16\left(-3\right)+|-\frac{2\times 2+1}{2}|-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Divide -144 by 9 to get -16.
48+|-\frac{2\times 2+1}{2}|-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Multiply -16 and -3 to get 48.
48+|-\frac{4+1}{2}|-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Multiply 2 and 2 to get 4.
48+|-\frac{5}{2}|-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Add 4 and 1 to get 5.
48+\frac{5}{2}-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{5}{2} is \frac{5}{2}.
\frac{96}{2}+\frac{5}{2}-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Convert 48 to fraction \frac{96}{2}.
\frac{96+5}{2}-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Since \frac{96}{2} and \frac{5}{2} have the same denominator, add them by adding their numerators.
\frac{101}{2}-3.7-|-2.7|-|-\frac{7\times 2+1}{2}|
Add 96 and 5 to get 101.
\frac{101}{2}-\frac{37}{10}-|-2.7|-|-\frac{7\times 2+1}{2}|
Convert decimal number 3.7 to fraction \frac{37}{10}.
\frac{505}{10}-\frac{37}{10}-|-2.7|-|-\frac{7\times 2+1}{2}|
Least common multiple of 2 and 10 is 10. Convert \frac{101}{2} and \frac{37}{10} to fractions with denominator 10.
\frac{505-37}{10}-|-2.7|-|-\frac{7\times 2+1}{2}|
Since \frac{505}{10} and \frac{37}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{468}{10}-|-2.7|-|-\frac{7\times 2+1}{2}|
Subtract 37 from 505 to get 468.
\frac{234}{5}-|-2.7|-|-\frac{7\times 2+1}{2}|
Reduce the fraction \frac{468}{10} to lowest terms by extracting and canceling out 2.
\frac{234}{5}-2.7-|-\frac{7\times 2+1}{2}|
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -2.7 is 2.7.
\frac{234}{5}-\frac{27}{10}-|-\frac{7\times 2+1}{2}|
Convert decimal number 2.7 to fraction \frac{27}{10}.
\frac{468}{10}-\frac{27}{10}-|-\frac{7\times 2+1}{2}|
Least common multiple of 5 and 10 is 10. Convert \frac{234}{5} and \frac{27}{10} to fractions with denominator 10.
\frac{468-27}{10}-|-\frac{7\times 2+1}{2}|
Since \frac{468}{10} and \frac{27}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{441}{10}-|-\frac{7\times 2+1}{2}|
Subtract 27 from 468 to get 441.
\frac{441}{10}-|-\frac{14+1}{2}|
Multiply 7 and 2 to get 14.
\frac{441}{10}-|-\frac{15}{2}|
Add 14 and 1 to get 15.
\frac{441}{10}-\frac{15}{2}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{15}{2} is \frac{15}{2}.
\frac{441}{10}-\frac{75}{10}
Least common multiple of 10 and 2 is 10. Convert \frac{441}{10} and \frac{15}{2} to fractions with denominator 10.
\frac{441-75}{10}
Since \frac{441}{10} and \frac{75}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{366}{10}
Subtract 75 from 441 to get 366.
\frac{183}{5}
Reduce the fraction \frac{366}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}