Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-8x^{2}-x+8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-8\right)\times 8}}{2\left(-8\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1+32\times 8}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-\left(-1\right)±\sqrt{1+256}}{2\left(-8\right)}
Multiply 32 times 8.
x=\frac{-\left(-1\right)±\sqrt{257}}{2\left(-8\right)}
Add 1 to 256.
x=\frac{1±\sqrt{257}}{2\left(-8\right)}
The opposite of -1 is 1.
x=\frac{1±\sqrt{257}}{-16}
Multiply 2 times -8.
x=\frac{\sqrt{257}+1}{-16}
Now solve the equation x=\frac{1±\sqrt{257}}{-16} when ± is plus. Add 1 to \sqrt{257}.
x=\frac{-\sqrt{257}-1}{16}
Divide 1+\sqrt{257} by -16.
x=\frac{1-\sqrt{257}}{-16}
Now solve the equation x=\frac{1±\sqrt{257}}{-16} when ± is minus. Subtract \sqrt{257} from 1.
x=\frac{\sqrt{257}-1}{16}
Divide 1-\sqrt{257} by -16.
-8x^{2}-x+8=-8\left(x-\frac{-\sqrt{257}-1}{16}\right)\left(x-\frac{\sqrt{257}-1}{16}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1-\sqrt{257}}{16} for x_{1} and \frac{-1+\sqrt{257}}{16} for x_{2}.