Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

-8a^{4}x\times \frac{3}{4}b-\left(\frac{\left(-\frac{2}{3}a^{2}c\right)^{2}}{\frac{4}{5}ac}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
-6a^{4}xb-\left(\frac{\left(-\frac{2}{3}a^{2}c\right)^{2}}{\frac{4}{5}ac}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Multiply -8 and \frac{3}{4} to get -6.
-6a^{4}xb-\left(\frac{\left(-\frac{2}{3}\right)^{2}\left(a^{2}\right)^{2}c^{2}}{\frac{4}{5}ac}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Expand \left(-\frac{2}{3}a^{2}c\right)^{2}.
-6a^{4}xb-\left(\frac{\left(-\frac{2}{3}\right)^{2}a^{4}c^{2}}{\frac{4}{5}ac}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-6a^{4}xb-\left(\frac{\frac{4}{9}a^{4}c^{2}}{\frac{4}{5}ac}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Calculate -\frac{2}{3} to the power of 2 and get \frac{4}{9}.
-6a^{4}xb-\left(\frac{\frac{4}{9}ca^{3}}{\frac{4}{5}}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Cancel out ac in both numerator and denominator.
-6a^{4}xb-\left(\frac{\frac{4}{9}ca^{3}\times 5}{4}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Divide \frac{4}{9}ca^{3} by \frac{4}{5} by multiplying \frac{4}{9}ca^{3} by the reciprocal of \frac{4}{5}.
-6a^{4}xb-\left(\frac{\frac{20}{9}ca^{3}}{4}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Multiply \frac{4}{9} and 5 to get \frac{20}{9}.
-6a^{4}xb-\left(\frac{5}{9}ca^{3}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Divide \frac{20}{9}ca^{3} by 4 to get \frac{5}{9}ca^{3}.
-6a^{4}xb-\left(\frac{7}{18}ca^{3}-6a^{4}bx\right)
Combine \frac{5}{9}ca^{3} and -\frac{1}{6}a^{3}c to get \frac{7}{18}ca^{3}.
-6a^{4}xb-\frac{7}{18}ca^{3}+6a^{4}bx
To find the opposite of \frac{7}{18}ca^{3}-6a^{4}bx, find the opposite of each term.
-\frac{7}{18}ca^{3}
Combine -6a^{4}xb and 6a^{4}bx to get 0.
-8a^{4}x\times \frac{3}{4}b-\left(\frac{\left(-\frac{2}{3}a^{2}c\right)^{2}}{\frac{4}{5}ac}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
-6a^{4}xb-\left(\frac{\left(-\frac{2}{3}a^{2}c\right)^{2}}{\frac{4}{5}ac}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Multiply -8 and \frac{3}{4} to get -6.
-6a^{4}xb-\left(\frac{\left(-\frac{2}{3}\right)^{2}\left(a^{2}\right)^{2}c^{2}}{\frac{4}{5}ac}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Expand \left(-\frac{2}{3}a^{2}c\right)^{2}.
-6a^{4}xb-\left(\frac{\left(-\frac{2}{3}\right)^{2}a^{4}c^{2}}{\frac{4}{5}ac}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-6a^{4}xb-\left(\frac{\frac{4}{9}a^{4}c^{2}}{\frac{4}{5}ac}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Calculate -\frac{2}{3} to the power of 2 and get \frac{4}{9}.
-6a^{4}xb-\left(\frac{\frac{4}{9}ca^{3}}{\frac{4}{5}}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Cancel out ac in both numerator and denominator.
-6a^{4}xb-\left(\frac{\frac{4}{9}ca^{3}\times 5}{4}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Divide \frac{4}{9}ca^{3} by \frac{4}{5} by multiplying \frac{4}{9}ca^{3} by the reciprocal of \frac{4}{5}.
-6a^{4}xb-\left(\frac{\frac{20}{9}ca^{3}}{4}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Multiply \frac{4}{9} and 5 to get \frac{20}{9}.
-6a^{4}xb-\left(\frac{5}{9}ca^{3}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Divide \frac{20}{9}ca^{3} by 4 to get \frac{5}{9}ca^{3}.
-6a^{4}xb-\left(\frac{7}{18}ca^{3}-6a^{4}bx\right)
Combine \frac{5}{9}ca^{3} and -\frac{1}{6}a^{3}c to get \frac{7}{18}ca^{3}.
-6a^{4}xb-\frac{7}{18}ca^{3}+6a^{4}bx
To find the opposite of \frac{7}{18}ca^{3}-6a^{4}bx, find the opposite of each term.
-\frac{7}{18}ca^{3}
Combine -6a^{4}xb and 6a^{4}bx to get 0.