Evaluate
-\frac{7ca^{3}}{18}
Expand
-\frac{7ca^{3}}{18}
Graph
Share
Copied to clipboard
-8a^{4}x\times \frac{3}{4}b-\left(\frac{\left(-\frac{2}{3}a^{2}c\right)^{2}}{\frac{4}{5}ac}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
-6a^{4}xb-\left(\frac{\left(-\frac{2}{3}a^{2}c\right)^{2}}{\frac{4}{5}ac}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Multiply -8 and \frac{3}{4} to get -6.
-6a^{4}xb-\left(\frac{\left(-\frac{2}{3}\right)^{2}\left(a^{2}\right)^{2}c^{2}}{\frac{4}{5}ac}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Expand \left(-\frac{2}{3}a^{2}c\right)^{2}.
-6a^{4}xb-\left(\frac{\left(-\frac{2}{3}\right)^{2}a^{4}c^{2}}{\frac{4}{5}ac}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-6a^{4}xb-\left(\frac{\frac{4}{9}a^{4}c^{2}}{\frac{4}{5}ac}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Calculate -\frac{2}{3} to the power of 2 and get \frac{4}{9}.
-6a^{4}xb-\left(\frac{\frac{4}{9}ca^{3}}{\frac{4}{5}}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Cancel out ac in both numerator and denominator.
-6a^{4}xb-\left(\frac{\frac{4}{9}ca^{3}\times 5}{4}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Divide \frac{4}{9}ca^{3} by \frac{4}{5} by multiplying \frac{4}{9}ca^{3} by the reciprocal of \frac{4}{5}.
-6a^{4}xb-\left(\frac{\frac{20}{9}ca^{3}}{4}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Multiply \frac{4}{9} and 5 to get \frac{20}{9}.
-6a^{4}xb-\left(\frac{5}{9}ca^{3}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Divide \frac{20}{9}ca^{3} by 4 to get \frac{5}{9}ca^{3}.
-6a^{4}xb-\left(\frac{7}{18}ca^{3}-6a^{4}bx\right)
Combine \frac{5}{9}ca^{3} and -\frac{1}{6}a^{3}c to get \frac{7}{18}ca^{3}.
-6a^{4}xb-\frac{7}{18}ca^{3}+6a^{4}bx
To find the opposite of \frac{7}{18}ca^{3}-6a^{4}bx, find the opposite of each term.
-\frac{7}{18}ca^{3}
Combine -6a^{4}xb and 6a^{4}bx to get 0.
-8a^{4}x\times \frac{3}{4}b-\left(\frac{\left(-\frac{2}{3}a^{2}c\right)^{2}}{\frac{4}{5}ac}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
-6a^{4}xb-\left(\frac{\left(-\frac{2}{3}a^{2}c\right)^{2}}{\frac{4}{5}ac}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Multiply -8 and \frac{3}{4} to get -6.
-6a^{4}xb-\left(\frac{\left(-\frac{2}{3}\right)^{2}\left(a^{2}\right)^{2}c^{2}}{\frac{4}{5}ac}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Expand \left(-\frac{2}{3}a^{2}c\right)^{2}.
-6a^{4}xb-\left(\frac{\left(-\frac{2}{3}\right)^{2}a^{4}c^{2}}{\frac{4}{5}ac}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-6a^{4}xb-\left(\frac{\frac{4}{9}a^{4}c^{2}}{\frac{4}{5}ac}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Calculate -\frac{2}{3} to the power of 2 and get \frac{4}{9}.
-6a^{4}xb-\left(\frac{\frac{4}{9}ca^{3}}{\frac{4}{5}}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Cancel out ac in both numerator and denominator.
-6a^{4}xb-\left(\frac{\frac{4}{9}ca^{3}\times 5}{4}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Divide \frac{4}{9}ca^{3} by \frac{4}{5} by multiplying \frac{4}{9}ca^{3} by the reciprocal of \frac{4}{5}.
-6a^{4}xb-\left(\frac{\frac{20}{9}ca^{3}}{4}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Multiply \frac{4}{9} and 5 to get \frac{20}{9}.
-6a^{4}xb-\left(\frac{5}{9}ca^{3}-\frac{1}{6}a^{3}c-6a^{4}bx\right)
Divide \frac{20}{9}ca^{3} by 4 to get \frac{5}{9}ca^{3}.
-6a^{4}xb-\left(\frac{7}{18}ca^{3}-6a^{4}bx\right)
Combine \frac{5}{9}ca^{3} and -\frac{1}{6}a^{3}c to get \frac{7}{18}ca^{3}.
-6a^{4}xb-\frac{7}{18}ca^{3}+6a^{4}bx
To find the opposite of \frac{7}{18}ca^{3}-6a^{4}bx, find the opposite of each term.
-\frac{7}{18}ca^{3}
Combine -6a^{4}xb and 6a^{4}bx to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}