Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

49x^{2}+28x+4-25=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-7x-2\right)^{2}.
49x^{2}+28x-21=0
Subtract 25 from 4 to get -21.
7x^{2}+4x-3=0
Divide both sides by 7.
a+b=4 ab=7\left(-3\right)=-21
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 7x^{2}+ax+bx-3. To find a and b, set up a system to be solved.
-1,21 -3,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -21.
-1+21=20 -3+7=4
Calculate the sum for each pair.
a=-3 b=7
The solution is the pair that gives sum 4.
\left(7x^{2}-3x\right)+\left(7x-3\right)
Rewrite 7x^{2}+4x-3 as \left(7x^{2}-3x\right)+\left(7x-3\right).
x\left(7x-3\right)+7x-3
Factor out x in 7x^{2}-3x.
\left(7x-3\right)\left(x+1\right)
Factor out common term 7x-3 by using distributive property.
x=\frac{3}{7} x=-1
To find equation solutions, solve 7x-3=0 and x+1=0.
49x^{2}+28x+4-25=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-7x-2\right)^{2}.
49x^{2}+28x-21=0
Subtract 25 from 4 to get -21.
x=\frac{-28±\sqrt{28^{2}-4\times 49\left(-21\right)}}{2\times 49}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 49 for a, 28 for b, and -21 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±\sqrt{784-4\times 49\left(-21\right)}}{2\times 49}
Square 28.
x=\frac{-28±\sqrt{784-196\left(-21\right)}}{2\times 49}
Multiply -4 times 49.
x=\frac{-28±\sqrt{784+4116}}{2\times 49}
Multiply -196 times -21.
x=\frac{-28±\sqrt{4900}}{2\times 49}
Add 784 to 4116.
x=\frac{-28±70}{2\times 49}
Take the square root of 4900.
x=\frac{-28±70}{98}
Multiply 2 times 49.
x=\frac{42}{98}
Now solve the equation x=\frac{-28±70}{98} when ± is plus. Add -28 to 70.
x=\frac{3}{7}
Reduce the fraction \frac{42}{98} to lowest terms by extracting and canceling out 14.
x=-\frac{98}{98}
Now solve the equation x=\frac{-28±70}{98} when ± is minus. Subtract 70 from -28.
x=-1
Divide -98 by 98.
x=\frac{3}{7} x=-1
The equation is now solved.
49x^{2}+28x+4-25=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-7x-2\right)^{2}.
49x^{2}+28x-21=0
Subtract 25 from 4 to get -21.
49x^{2}+28x=21
Add 21 to both sides. Anything plus zero gives itself.
\frac{49x^{2}+28x}{49}=\frac{21}{49}
Divide both sides by 49.
x^{2}+\frac{28}{49}x=\frac{21}{49}
Dividing by 49 undoes the multiplication by 49.
x^{2}+\frac{4}{7}x=\frac{21}{49}
Reduce the fraction \frac{28}{49} to lowest terms by extracting and canceling out 7.
x^{2}+\frac{4}{7}x=\frac{3}{7}
Reduce the fraction \frac{21}{49} to lowest terms by extracting and canceling out 7.
x^{2}+\frac{4}{7}x+\left(\frac{2}{7}\right)^{2}=\frac{3}{7}+\left(\frac{2}{7}\right)^{2}
Divide \frac{4}{7}, the coefficient of the x term, by 2 to get \frac{2}{7}. Then add the square of \frac{2}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{7}x+\frac{4}{49}=\frac{3}{7}+\frac{4}{49}
Square \frac{2}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{7}x+\frac{4}{49}=\frac{25}{49}
Add \frac{3}{7} to \frac{4}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2}{7}\right)^{2}=\frac{25}{49}
Factor x^{2}+\frac{4}{7}x+\frac{4}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{7}\right)^{2}}=\sqrt{\frac{25}{49}}
Take the square root of both sides of the equation.
x+\frac{2}{7}=\frac{5}{7} x+\frac{2}{7}=-\frac{5}{7}
Simplify.
x=\frac{3}{7} x=-1
Subtract \frac{2}{7} from both sides of the equation.