Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(-6\right)^{3}m^{3}\left(n^{-2}\right)^{3}\left(-4m^{-3}n^{-1}\right)^{-2}
Expand \left(-6mn^{-2}\right)^{3}.
\left(-6\right)^{3}m^{3}n^{-6}\left(-4m^{-3}n^{-1}\right)^{-2}
To raise a power to another power, multiply the exponents. Multiply -2 and 3 to get -6.
-216m^{3}n^{-6}\left(-4m^{-3}n^{-1}\right)^{-2}
Calculate -6 to the power of 3 and get -216.
-216m^{3}n^{-6}\left(-4\right)^{-2}\left(m^{-3}\right)^{-2}\left(n^{-1}\right)^{-2}
Expand \left(-4m^{-3}n^{-1}\right)^{-2}.
-216m^{3}n^{-6}\left(-4\right)^{-2}m^{6}\left(n^{-1}\right)^{-2}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
-216m^{3}n^{-6}\left(-4\right)^{-2}m^{6}n^{2}
To raise a power to another power, multiply the exponents. Multiply -1 and -2 to get 2.
-216m^{3}n^{-6}\times \frac{1}{16}m^{6}n^{2}
Calculate -4 to the power of -2 and get \frac{1}{16}.
-\frac{27}{2}m^{3}n^{-6}m^{6}n^{2}
Multiply -216 and \frac{1}{16} to get -\frac{27}{2}.
-\frac{27}{2}m^{9}n^{-6}n^{2}
To multiply powers of the same base, add their exponents. Add 3 and 6 to get 9.
-\frac{27}{2}m^{9}n^{-4}
To multiply powers of the same base, add their exponents. Add -6 and 2 to get -4.
\left(-6\right)^{3}m^{3}\left(n^{-2}\right)^{3}\left(-4m^{-3}n^{-1}\right)^{-2}
Expand \left(-6mn^{-2}\right)^{3}.
\left(-6\right)^{3}m^{3}n^{-6}\left(-4m^{-3}n^{-1}\right)^{-2}
To raise a power to another power, multiply the exponents. Multiply -2 and 3 to get -6.
-216m^{3}n^{-6}\left(-4m^{-3}n^{-1}\right)^{-2}
Calculate -6 to the power of 3 and get -216.
-216m^{3}n^{-6}\left(-4\right)^{-2}\left(m^{-3}\right)^{-2}\left(n^{-1}\right)^{-2}
Expand \left(-4m^{-3}n^{-1}\right)^{-2}.
-216m^{3}n^{-6}\left(-4\right)^{-2}m^{6}\left(n^{-1}\right)^{-2}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
-216m^{3}n^{-6}\left(-4\right)^{-2}m^{6}n^{2}
To raise a power to another power, multiply the exponents. Multiply -1 and -2 to get 2.
-216m^{3}n^{-6}\times \frac{1}{16}m^{6}n^{2}
Calculate -4 to the power of -2 and get \frac{1}{16}.
-\frac{27}{2}m^{3}n^{-6}m^{6}n^{2}
Multiply -216 and \frac{1}{16} to get -\frac{27}{2}.
-\frac{27}{2}m^{9}n^{-6}n^{2}
To multiply powers of the same base, add their exponents. Add 3 and 6 to get 9.
-\frac{27}{2}m^{9}n^{-4}
To multiply powers of the same base, add their exponents. Add -6 and 2 to get -4.