Evaluate
-\frac{27m^{9}}{2n^{4}}
Expand
-\frac{27m^{9}}{2n^{4}}
Share
Copied to clipboard
\left(-6\right)^{3}m^{3}\left(n^{-2}\right)^{3}\left(-4m^{-3}n^{-1}\right)^{-2}
Expand \left(-6mn^{-2}\right)^{3}.
\left(-6\right)^{3}m^{3}n^{-6}\left(-4m^{-3}n^{-1}\right)^{-2}
To raise a power to another power, multiply the exponents. Multiply -2 and 3 to get -6.
-216m^{3}n^{-6}\left(-4m^{-3}n^{-1}\right)^{-2}
Calculate -6 to the power of 3 and get -216.
-216m^{3}n^{-6}\left(-4\right)^{-2}\left(m^{-3}\right)^{-2}\left(n^{-1}\right)^{-2}
Expand \left(-4m^{-3}n^{-1}\right)^{-2}.
-216m^{3}n^{-6}\left(-4\right)^{-2}m^{6}\left(n^{-1}\right)^{-2}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
-216m^{3}n^{-6}\left(-4\right)^{-2}m^{6}n^{2}
To raise a power to another power, multiply the exponents. Multiply -1 and -2 to get 2.
-216m^{3}n^{-6}\times \frac{1}{16}m^{6}n^{2}
Calculate -4 to the power of -2 and get \frac{1}{16}.
-\frac{27}{2}m^{3}n^{-6}m^{6}n^{2}
Multiply -216 and \frac{1}{16} to get -\frac{27}{2}.
-\frac{27}{2}m^{9}n^{-6}n^{2}
To multiply powers of the same base, add their exponents. Add 3 and 6 to get 9.
-\frac{27}{2}m^{9}n^{-4}
To multiply powers of the same base, add their exponents. Add -6 and 2 to get -4.
\left(-6\right)^{3}m^{3}\left(n^{-2}\right)^{3}\left(-4m^{-3}n^{-1}\right)^{-2}
Expand \left(-6mn^{-2}\right)^{3}.
\left(-6\right)^{3}m^{3}n^{-6}\left(-4m^{-3}n^{-1}\right)^{-2}
To raise a power to another power, multiply the exponents. Multiply -2 and 3 to get -6.
-216m^{3}n^{-6}\left(-4m^{-3}n^{-1}\right)^{-2}
Calculate -6 to the power of 3 and get -216.
-216m^{3}n^{-6}\left(-4\right)^{-2}\left(m^{-3}\right)^{-2}\left(n^{-1}\right)^{-2}
Expand \left(-4m^{-3}n^{-1}\right)^{-2}.
-216m^{3}n^{-6}\left(-4\right)^{-2}m^{6}\left(n^{-1}\right)^{-2}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
-216m^{3}n^{-6}\left(-4\right)^{-2}m^{6}n^{2}
To raise a power to another power, multiply the exponents. Multiply -1 and -2 to get 2.
-216m^{3}n^{-6}\times \frac{1}{16}m^{6}n^{2}
Calculate -4 to the power of -2 and get \frac{1}{16}.
-\frac{27}{2}m^{3}n^{-6}m^{6}n^{2}
Multiply -216 and \frac{1}{16} to get -\frac{27}{2}.
-\frac{27}{2}m^{9}n^{-6}n^{2}
To multiply powers of the same base, add their exponents. Add 3 and 6 to get 9.
-\frac{27}{2}m^{9}n^{-4}
To multiply powers of the same base, add their exponents. Add -6 and 2 to get -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}