Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

-9x^{2}-4x-1-4x
Combine -5x^{2} and -4x^{2} to get -9x^{2}.
-9x^{2}-8x-1
Combine -4x and -4x to get -8x.
factor(-9x^{2}-4x-1-4x)
Combine -5x^{2} and -4x^{2} to get -9x^{2}.
factor(-9x^{2}-8x-1)
Combine -4x and -4x to get -8x.
-9x^{2}-8x-1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-9\right)\left(-1\right)}}{2\left(-9\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-9\right)\left(-1\right)}}{2\left(-9\right)}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+36\left(-1\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-\left(-8\right)±\sqrt{64-36}}{2\left(-9\right)}
Multiply 36 times -1.
x=\frac{-\left(-8\right)±\sqrt{28}}{2\left(-9\right)}
Add 64 to -36.
x=\frac{-\left(-8\right)±2\sqrt{7}}{2\left(-9\right)}
Take the square root of 28.
x=\frac{8±2\sqrt{7}}{2\left(-9\right)}
The opposite of -8 is 8.
x=\frac{8±2\sqrt{7}}{-18}
Multiply 2 times -9.
x=\frac{2\sqrt{7}+8}{-18}
Now solve the equation x=\frac{8±2\sqrt{7}}{-18} when ± is plus. Add 8 to 2\sqrt{7}.
x=\frac{-\sqrt{7}-4}{9}
Divide 8+2\sqrt{7} by -18.
x=\frac{8-2\sqrt{7}}{-18}
Now solve the equation x=\frac{8±2\sqrt{7}}{-18} when ± is minus. Subtract 2\sqrt{7} from 8.
x=\frac{\sqrt{7}-4}{9}
Divide 8-2\sqrt{7} by -18.
-9x^{2}-8x-1=-9\left(x-\frac{-\sqrt{7}-4}{9}\right)\left(x-\frac{\sqrt{7}-4}{9}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-4-\sqrt{7}}{9} for x_{1} and \frac{-4+\sqrt{7}}{9} for x_{2}.