Solve for x
x=\frac{2}{5}=0.4
x = \frac{6}{5} = 1\frac{1}{5} = 1.2
Graph
Share
Copied to clipboard
25x^{2}-40x+16-4=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-5x+4\right)^{2}.
25x^{2}-40x+12=0
Subtract 4 from 16 to get 12.
a+b=-40 ab=25\times 12=300
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 25x^{2}+ax+bx+12. To find a and b, set up a system to be solved.
-1,-300 -2,-150 -3,-100 -4,-75 -5,-60 -6,-50 -10,-30 -12,-25 -15,-20
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 300.
-1-300=-301 -2-150=-152 -3-100=-103 -4-75=-79 -5-60=-65 -6-50=-56 -10-30=-40 -12-25=-37 -15-20=-35
Calculate the sum for each pair.
a=-30 b=-10
The solution is the pair that gives sum -40.
\left(25x^{2}-30x\right)+\left(-10x+12\right)
Rewrite 25x^{2}-40x+12 as \left(25x^{2}-30x\right)+\left(-10x+12\right).
5x\left(5x-6\right)-2\left(5x-6\right)
Factor out 5x in the first and -2 in the second group.
\left(5x-6\right)\left(5x-2\right)
Factor out common term 5x-6 by using distributive property.
x=\frac{6}{5} x=\frac{2}{5}
To find equation solutions, solve 5x-6=0 and 5x-2=0.
25x^{2}-40x+16-4=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-5x+4\right)^{2}.
25x^{2}-40x+12=0
Subtract 4 from 16 to get 12.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 25\times 12}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, -40 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-40\right)±\sqrt{1600-4\times 25\times 12}}{2\times 25}
Square -40.
x=\frac{-\left(-40\right)±\sqrt{1600-100\times 12}}{2\times 25}
Multiply -4 times 25.
x=\frac{-\left(-40\right)±\sqrt{1600-1200}}{2\times 25}
Multiply -100 times 12.
x=\frac{-\left(-40\right)±\sqrt{400}}{2\times 25}
Add 1600 to -1200.
x=\frac{-\left(-40\right)±20}{2\times 25}
Take the square root of 400.
x=\frac{40±20}{2\times 25}
The opposite of -40 is 40.
x=\frac{40±20}{50}
Multiply 2 times 25.
x=\frac{60}{50}
Now solve the equation x=\frac{40±20}{50} when ± is plus. Add 40 to 20.
x=\frac{6}{5}
Reduce the fraction \frac{60}{50} to lowest terms by extracting and canceling out 10.
x=\frac{20}{50}
Now solve the equation x=\frac{40±20}{50} when ± is minus. Subtract 20 from 40.
x=\frac{2}{5}
Reduce the fraction \frac{20}{50} to lowest terms by extracting and canceling out 10.
x=\frac{6}{5} x=\frac{2}{5}
The equation is now solved.
25x^{2}-40x+16-4=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-5x+4\right)^{2}.
25x^{2}-40x+12=0
Subtract 4 from 16 to get 12.
25x^{2}-40x=-12
Subtract 12 from both sides. Anything subtracted from zero gives its negation.
\frac{25x^{2}-40x}{25}=-\frac{12}{25}
Divide both sides by 25.
x^{2}+\left(-\frac{40}{25}\right)x=-\frac{12}{25}
Dividing by 25 undoes the multiplication by 25.
x^{2}-\frac{8}{5}x=-\frac{12}{25}
Reduce the fraction \frac{-40}{25} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{8}{5}x+\left(-\frac{4}{5}\right)^{2}=-\frac{12}{25}+\left(-\frac{4}{5}\right)^{2}
Divide -\frac{8}{5}, the coefficient of the x term, by 2 to get -\frac{4}{5}. Then add the square of -\frac{4}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{5}x+\frac{16}{25}=\frac{-12+16}{25}
Square -\frac{4}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{5}x+\frac{16}{25}=\frac{4}{25}
Add -\frac{12}{25} to \frac{16}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4}{5}\right)^{2}=\frac{4}{25}
Factor x^{2}-\frac{8}{5}x+\frac{16}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{5}\right)^{2}}=\sqrt{\frac{4}{25}}
Take the square root of both sides of the equation.
x-\frac{4}{5}=\frac{2}{5} x-\frac{4}{5}=-\frac{2}{5}
Simplify.
x=\frac{6}{5} x=\frac{2}{5}
Add \frac{4}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}