Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

-9v^{2}-3v+2+7
Combine -5v^{2} and -4v^{2} to get -9v^{2}.
-9v^{2}-3v+9
Add 2 and 7 to get 9.
factor(-9v^{2}-3v+2+7)
Combine -5v^{2} and -4v^{2} to get -9v^{2}.
factor(-9v^{2}-3v+9)
Add 2 and 7 to get 9.
-9v^{2}-3v+9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
v=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-9\right)\times 9}}{2\left(-9\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
v=\frac{-\left(-3\right)±\sqrt{9-4\left(-9\right)\times 9}}{2\left(-9\right)}
Square -3.
v=\frac{-\left(-3\right)±\sqrt{9+36\times 9}}{2\left(-9\right)}
Multiply -4 times -9.
v=\frac{-\left(-3\right)±\sqrt{9+324}}{2\left(-9\right)}
Multiply 36 times 9.
v=\frac{-\left(-3\right)±\sqrt{333}}{2\left(-9\right)}
Add 9 to 324.
v=\frac{-\left(-3\right)±3\sqrt{37}}{2\left(-9\right)}
Take the square root of 333.
v=\frac{3±3\sqrt{37}}{2\left(-9\right)}
The opposite of -3 is 3.
v=\frac{3±3\sqrt{37}}{-18}
Multiply 2 times -9.
v=\frac{3\sqrt{37}+3}{-18}
Now solve the equation v=\frac{3±3\sqrt{37}}{-18} when ± is plus. Add 3 to 3\sqrt{37}.
v=\frac{-\sqrt{37}-1}{6}
Divide 3+3\sqrt{37} by -18.
v=\frac{3-3\sqrt{37}}{-18}
Now solve the equation v=\frac{3±3\sqrt{37}}{-18} when ± is minus. Subtract 3\sqrt{37} from 3.
v=\frac{\sqrt{37}-1}{6}
Divide 3-3\sqrt{37} by -18.
-9v^{2}-3v+9=-9\left(v-\frac{-\sqrt{37}-1}{6}\right)\left(v-\frac{\sqrt{37}-1}{6}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1-\sqrt{37}}{6} for x_{1} and \frac{-1+\sqrt{37}}{6} for x_{2}.