Evaluate
9-3v-9v^{2}
Factor
-9\left(v-\frac{-\sqrt{37}-1}{6}\right)\left(v-\frac{\sqrt{37}-1}{6}\right)
Share
Copied to clipboard
-9v^{2}-3v+2+7
Combine -5v^{2} and -4v^{2} to get -9v^{2}.
-9v^{2}-3v+9
Add 2 and 7 to get 9.
factor(-9v^{2}-3v+2+7)
Combine -5v^{2} and -4v^{2} to get -9v^{2}.
factor(-9v^{2}-3v+9)
Add 2 and 7 to get 9.
-9v^{2}-3v+9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
v=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-9\right)\times 9}}{2\left(-9\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
v=\frac{-\left(-3\right)±\sqrt{9-4\left(-9\right)\times 9}}{2\left(-9\right)}
Square -3.
v=\frac{-\left(-3\right)±\sqrt{9+36\times 9}}{2\left(-9\right)}
Multiply -4 times -9.
v=\frac{-\left(-3\right)±\sqrt{9+324}}{2\left(-9\right)}
Multiply 36 times 9.
v=\frac{-\left(-3\right)±\sqrt{333}}{2\left(-9\right)}
Add 9 to 324.
v=\frac{-\left(-3\right)±3\sqrt{37}}{2\left(-9\right)}
Take the square root of 333.
v=\frac{3±3\sqrt{37}}{2\left(-9\right)}
The opposite of -3 is 3.
v=\frac{3±3\sqrt{37}}{-18}
Multiply 2 times -9.
v=\frac{3\sqrt{37}+3}{-18}
Now solve the equation v=\frac{3±3\sqrt{37}}{-18} when ± is plus. Add 3 to 3\sqrt{37}.
v=\frac{-\sqrt{37}-1}{6}
Divide 3+3\sqrt{37} by -18.
v=\frac{3-3\sqrt{37}}{-18}
Now solve the equation v=\frac{3±3\sqrt{37}}{-18} when ± is minus. Subtract 3\sqrt{37} from 3.
v=\frac{\sqrt{37}-1}{6}
Divide 3-3\sqrt{37} by -18.
-9v^{2}-3v+9=-9\left(v-\frac{-\sqrt{37}-1}{6}\right)\left(v-\frac{\sqrt{37}-1}{6}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1-\sqrt{37}}{6} for x_{1} and \frac{-1+\sqrt{37}}{6} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}