Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

36\left(-5t\right)^{2}=255^{2}
Multiply both sides of the equation by 36.
36\left(-5\right)^{2}t^{2}=255^{2}
Expand \left(-5t\right)^{2}.
36\times 25t^{2}=255^{2}
Calculate -5 to the power of 2 and get 25.
900t^{2}=255^{2}
Multiply 36 and 25 to get 900.
900t^{2}=65025
Calculate 255 to the power of 2 and get 65025.
900t^{2}-65025=0
Subtract 65025 from both sides.
4t^{2}-289=0
Divide both sides by 225.
\left(2t-17\right)\left(2t+17\right)=0
Consider 4t^{2}-289. Rewrite 4t^{2}-289 as \left(2t\right)^{2}-17^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
t=\frac{17}{2} t=-\frac{17}{2}
To find equation solutions, solve 2t-17=0 and 2t+17=0.
36\left(-5t\right)^{2}=255^{2}
Multiply both sides of the equation by 36.
36\left(-5\right)^{2}t^{2}=255^{2}
Expand \left(-5t\right)^{2}.
36\times 25t^{2}=255^{2}
Calculate -5 to the power of 2 and get 25.
900t^{2}=255^{2}
Multiply 36 and 25 to get 900.
900t^{2}=65025
Calculate 255 to the power of 2 and get 65025.
t^{2}=\frac{65025}{900}
Divide both sides by 900.
t^{2}=\frac{289}{4}
Reduce the fraction \frac{65025}{900} to lowest terms by extracting and canceling out 225.
t=\frac{17}{2} t=-\frac{17}{2}
Take the square root of both sides of the equation.
36\left(-5t\right)^{2}=255^{2}
Multiply both sides of the equation by 36.
36\left(-5\right)^{2}t^{2}=255^{2}
Expand \left(-5t\right)^{2}.
36\times 25t^{2}=255^{2}
Calculate -5 to the power of 2 and get 25.
900t^{2}=255^{2}
Multiply 36 and 25 to get 900.
900t^{2}=65025
Calculate 255 to the power of 2 and get 65025.
900t^{2}-65025=0
Subtract 65025 from both sides.
t=\frac{0±\sqrt{0^{2}-4\times 900\left(-65025\right)}}{2\times 900}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 900 for a, 0 for b, and -65025 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\times 900\left(-65025\right)}}{2\times 900}
Square 0.
t=\frac{0±\sqrt{-3600\left(-65025\right)}}{2\times 900}
Multiply -4 times 900.
t=\frac{0±\sqrt{234090000}}{2\times 900}
Multiply -3600 times -65025.
t=\frac{0±15300}{2\times 900}
Take the square root of 234090000.
t=\frac{0±15300}{1800}
Multiply 2 times 900.
t=\frac{17}{2}
Now solve the equation t=\frac{0±15300}{1800} when ± is plus. Reduce the fraction \frac{15300}{1800} to lowest terms by extracting and canceling out 900.
t=-\frac{17}{2}
Now solve the equation t=\frac{0±15300}{1800} when ± is minus. Reduce the fraction \frac{-15300}{1800} to lowest terms by extracting and canceling out 900.
t=\frac{17}{2} t=-\frac{17}{2}
The equation is now solved.