Evaluate
-\frac{397}{10}=-39.7
Factor
-\frac{397}{10} = -39\frac{7}{10} = -39.7
Share
Copied to clipboard
-5\times \frac{16+1}{2}+\frac{-7}{-\frac{2\times 2+1}{2}}
Multiply 8 and 2 to get 16.
-5\times \frac{17}{2}+\frac{-7}{-\frac{2\times 2+1}{2}}
Add 16 and 1 to get 17.
\frac{-5\times 17}{2}+\frac{-7}{-\frac{2\times 2+1}{2}}
Express -5\times \frac{17}{2} as a single fraction.
\frac{-85}{2}+\frac{-7}{-\frac{2\times 2+1}{2}}
Multiply -5 and 17 to get -85.
-\frac{85}{2}+\frac{-7}{-\frac{2\times 2+1}{2}}
Fraction \frac{-85}{2} can be rewritten as -\frac{85}{2} by extracting the negative sign.
-\frac{85}{2}+\frac{-7}{-\frac{4+1}{2}}
Multiply 2 and 2 to get 4.
-\frac{85}{2}+\frac{-7}{-\frac{5}{2}}
Add 4 and 1 to get 5.
-\frac{85}{2}-7\left(-\frac{2}{5}\right)
Divide -7 by -\frac{5}{2} by multiplying -7 by the reciprocal of -\frac{5}{2}.
-\frac{85}{2}+\frac{-7\left(-2\right)}{5}
Express -7\left(-\frac{2}{5}\right) as a single fraction.
-\frac{85}{2}+\frac{14}{5}
Multiply -7 and -2 to get 14.
-\frac{425}{10}+\frac{28}{10}
Least common multiple of 2 and 5 is 10. Convert -\frac{85}{2} and \frac{14}{5} to fractions with denominator 10.
\frac{-425+28}{10}
Since -\frac{425}{10} and \frac{28}{10} have the same denominator, add them by adding their numerators.
-\frac{397}{10}
Add -425 and 28 to get -397.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}