( - 5 / 15 - ( 6 / 24 + 12 / 18 - 15 / 25 ) ] + [ - 2 - 6 / 9 + 415 ]
Evaluate
\frac{24701}{60}\approx 411.683333333
Factor
\frac{17 \cdot 1453}{2 ^ {2} \cdot 3 \cdot 5} = 411\frac{41}{60} = 411.68333333333334
Share
Copied to clipboard
-\frac{1}{3}-\left(\frac{6}{24}+\frac{12}{18}-\frac{15}{25}\right)-2-\frac{6}{9}+415
Reduce the fraction \frac{5}{15} to lowest terms by extracting and canceling out 5.
-\frac{1}{3}-\left(\frac{1}{4}+\frac{12}{18}-\frac{15}{25}\right)-2-\frac{6}{9}+415
Reduce the fraction \frac{6}{24} to lowest terms by extracting and canceling out 6.
-\frac{1}{3}-\left(\frac{1}{4}+\frac{2}{3}-\frac{15}{25}\right)-2-\frac{6}{9}+415
Reduce the fraction \frac{12}{18} to lowest terms by extracting and canceling out 6.
-\frac{1}{3}-\left(\frac{3}{12}+\frac{8}{12}-\frac{15}{25}\right)-2-\frac{6}{9}+415
Least common multiple of 4 and 3 is 12. Convert \frac{1}{4} and \frac{2}{3} to fractions with denominator 12.
-\frac{1}{3}-\left(\frac{3+8}{12}-\frac{15}{25}\right)-2-\frac{6}{9}+415
Since \frac{3}{12} and \frac{8}{12} have the same denominator, add them by adding their numerators.
-\frac{1}{3}-\left(\frac{11}{12}-\frac{15}{25}\right)-2-\frac{6}{9}+415
Add 3 and 8 to get 11.
-\frac{1}{3}-\left(\frac{11}{12}-\frac{3}{5}\right)-2-\frac{6}{9}+415
Reduce the fraction \frac{15}{25} to lowest terms by extracting and canceling out 5.
-\frac{1}{3}-\left(\frac{55}{60}-\frac{36}{60}\right)-2-\frac{6}{9}+415
Least common multiple of 12 and 5 is 60. Convert \frac{11}{12} and \frac{3}{5} to fractions with denominator 60.
-\frac{1}{3}-\frac{55-36}{60}-2-\frac{6}{9}+415
Since \frac{55}{60} and \frac{36}{60} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{3}-\frac{19}{60}-2-\frac{6}{9}+415
Subtract 36 from 55 to get 19.
-\frac{20}{60}-\frac{19}{60}-2-\frac{6}{9}+415
Least common multiple of 3 and 60 is 60. Convert -\frac{1}{3} and \frac{19}{60} to fractions with denominator 60.
\frac{-20-19}{60}-2-\frac{6}{9}+415
Since -\frac{20}{60} and \frac{19}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{-39}{60}-2-\frac{6}{9}+415
Subtract 19 from -20 to get -39.
-\frac{13}{20}-2-\frac{6}{9}+415
Reduce the fraction \frac{-39}{60} to lowest terms by extracting and canceling out 3.
-\frac{13}{20}-\frac{40}{20}-\frac{6}{9}+415
Convert 2 to fraction \frac{40}{20}.
\frac{-13-40}{20}-\frac{6}{9}+415
Since -\frac{13}{20} and \frac{40}{20} have the same denominator, subtract them by subtracting their numerators.
-\frac{53}{20}-\frac{6}{9}+415
Subtract 40 from -13 to get -53.
-\frac{53}{20}-\frac{2}{3}+415
Reduce the fraction \frac{6}{9} to lowest terms by extracting and canceling out 3.
-\frac{159}{60}-\frac{40}{60}+415
Least common multiple of 20 and 3 is 60. Convert -\frac{53}{20} and \frac{2}{3} to fractions with denominator 60.
\frac{-159-40}{60}+415
Since -\frac{159}{60} and \frac{40}{60} have the same denominator, subtract them by subtracting their numerators.
-\frac{199}{60}+415
Subtract 40 from -159 to get -199.
-\frac{199}{60}+\frac{24900}{60}
Convert 415 to fraction \frac{24900}{60}.
\frac{-199+24900}{60}
Since -\frac{199}{60} and \frac{24900}{60} have the same denominator, add them by adding their numerators.
\frac{24701}{60}
Add -199 and 24900 to get 24701.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}