Solve for x
x=7
x=-\frac{5}{7}\approx -0.714285714
Graph
Share
Copied to clipboard
16x^{2}-8x+1=9\left(x+2\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-4x+1\right)^{2}.
16x^{2}-8x+1=9\left(x^{2}+4x+4\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
16x^{2}-8x+1=9x^{2}+36x+36
Use the distributive property to multiply 9 by x^{2}+4x+4.
16x^{2}-8x+1-9x^{2}=36x+36
Subtract 9x^{2} from both sides.
7x^{2}-8x+1=36x+36
Combine 16x^{2} and -9x^{2} to get 7x^{2}.
7x^{2}-8x+1-36x=36
Subtract 36x from both sides.
7x^{2}-44x+1=36
Combine -8x and -36x to get -44x.
7x^{2}-44x+1-36=0
Subtract 36 from both sides.
7x^{2}-44x-35=0
Subtract 36 from 1 to get -35.
a+b=-44 ab=7\left(-35\right)=-245
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 7x^{2}+ax+bx-35. To find a and b, set up a system to be solved.
1,-245 5,-49 7,-35
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -245.
1-245=-244 5-49=-44 7-35=-28
Calculate the sum for each pair.
a=-49 b=5
The solution is the pair that gives sum -44.
\left(7x^{2}-49x\right)+\left(5x-35\right)
Rewrite 7x^{2}-44x-35 as \left(7x^{2}-49x\right)+\left(5x-35\right).
7x\left(x-7\right)+5\left(x-7\right)
Factor out 7x in the first and 5 in the second group.
\left(x-7\right)\left(7x+5\right)
Factor out common term x-7 by using distributive property.
x=7 x=-\frac{5}{7}
To find equation solutions, solve x-7=0 and 7x+5=0.
16x^{2}-8x+1=9\left(x+2\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-4x+1\right)^{2}.
16x^{2}-8x+1=9\left(x^{2}+4x+4\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
16x^{2}-8x+1=9x^{2}+36x+36
Use the distributive property to multiply 9 by x^{2}+4x+4.
16x^{2}-8x+1-9x^{2}=36x+36
Subtract 9x^{2} from both sides.
7x^{2}-8x+1=36x+36
Combine 16x^{2} and -9x^{2} to get 7x^{2}.
7x^{2}-8x+1-36x=36
Subtract 36x from both sides.
7x^{2}-44x+1=36
Combine -8x and -36x to get -44x.
7x^{2}-44x+1-36=0
Subtract 36 from both sides.
7x^{2}-44x-35=0
Subtract 36 from 1 to get -35.
x=\frac{-\left(-44\right)±\sqrt{\left(-44\right)^{2}-4\times 7\left(-35\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -44 for b, and -35 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-44\right)±\sqrt{1936-4\times 7\left(-35\right)}}{2\times 7}
Square -44.
x=\frac{-\left(-44\right)±\sqrt{1936-28\left(-35\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-44\right)±\sqrt{1936+980}}{2\times 7}
Multiply -28 times -35.
x=\frac{-\left(-44\right)±\sqrt{2916}}{2\times 7}
Add 1936 to 980.
x=\frac{-\left(-44\right)±54}{2\times 7}
Take the square root of 2916.
x=\frac{44±54}{2\times 7}
The opposite of -44 is 44.
x=\frac{44±54}{14}
Multiply 2 times 7.
x=\frac{98}{14}
Now solve the equation x=\frac{44±54}{14} when ± is plus. Add 44 to 54.
x=7
Divide 98 by 14.
x=-\frac{10}{14}
Now solve the equation x=\frac{44±54}{14} when ± is minus. Subtract 54 from 44.
x=-\frac{5}{7}
Reduce the fraction \frac{-10}{14} to lowest terms by extracting and canceling out 2.
x=7 x=-\frac{5}{7}
The equation is now solved.
16x^{2}-8x+1=9\left(x+2\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-4x+1\right)^{2}.
16x^{2}-8x+1=9\left(x^{2}+4x+4\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
16x^{2}-8x+1=9x^{2}+36x+36
Use the distributive property to multiply 9 by x^{2}+4x+4.
16x^{2}-8x+1-9x^{2}=36x+36
Subtract 9x^{2} from both sides.
7x^{2}-8x+1=36x+36
Combine 16x^{2} and -9x^{2} to get 7x^{2}.
7x^{2}-8x+1-36x=36
Subtract 36x from both sides.
7x^{2}-44x+1=36
Combine -8x and -36x to get -44x.
7x^{2}-44x=36-1
Subtract 1 from both sides.
7x^{2}-44x=35
Subtract 1 from 36 to get 35.
\frac{7x^{2}-44x}{7}=\frac{35}{7}
Divide both sides by 7.
x^{2}-\frac{44}{7}x=\frac{35}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-\frac{44}{7}x=5
Divide 35 by 7.
x^{2}-\frac{44}{7}x+\left(-\frac{22}{7}\right)^{2}=5+\left(-\frac{22}{7}\right)^{2}
Divide -\frac{44}{7}, the coefficient of the x term, by 2 to get -\frac{22}{7}. Then add the square of -\frac{22}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{44}{7}x+\frac{484}{49}=5+\frac{484}{49}
Square -\frac{22}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{44}{7}x+\frac{484}{49}=\frac{729}{49}
Add 5 to \frac{484}{49}.
\left(x-\frac{22}{7}\right)^{2}=\frac{729}{49}
Factor x^{2}-\frac{44}{7}x+\frac{484}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{22}{7}\right)^{2}}=\sqrt{\frac{729}{49}}
Take the square root of both sides of the equation.
x-\frac{22}{7}=\frac{27}{7} x-\frac{22}{7}=-\frac{27}{7}
Simplify.
x=7 x=-\frac{5}{7}
Add \frac{22}{7} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}