Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-4=12x^{2}-10x
Subtract 1 from 1 to get 0.
12x^{2}-10x=-4
Swap sides so that all variable terms are on the left hand side.
12x^{2}-10x+4=0
Add 4 to both sides.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 12\times 4}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, -10 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 12\times 4}}{2\times 12}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-48\times 4}}{2\times 12}
Multiply -4 times 12.
x=\frac{-\left(-10\right)±\sqrt{100-192}}{2\times 12}
Multiply -48 times 4.
x=\frac{-\left(-10\right)±\sqrt{-92}}{2\times 12}
Add 100 to -192.
x=\frac{-\left(-10\right)±2\sqrt{23}i}{2\times 12}
Take the square root of -92.
x=\frac{10±2\sqrt{23}i}{2\times 12}
The opposite of -10 is 10.
x=\frac{10±2\sqrt{23}i}{24}
Multiply 2 times 12.
x=\frac{10+2\sqrt{23}i}{24}
Now solve the equation x=\frac{10±2\sqrt{23}i}{24} when ± is plus. Add 10 to 2i\sqrt{23}.
x=\frac{5+\sqrt{23}i}{12}
Divide 10+2i\sqrt{23} by 24.
x=\frac{-2\sqrt{23}i+10}{24}
Now solve the equation x=\frac{10±2\sqrt{23}i}{24} when ± is minus. Subtract 2i\sqrt{23} from 10.
x=\frac{-\sqrt{23}i+5}{12}
Divide 10-2i\sqrt{23} by 24.
x=\frac{5+\sqrt{23}i}{12} x=\frac{-\sqrt{23}i+5}{12}
The equation is now solved.
-4=12x^{2}-10x
Subtract 1 from 1 to get 0.
12x^{2}-10x=-4
Swap sides so that all variable terms are on the left hand side.
\frac{12x^{2}-10x}{12}=-\frac{4}{12}
Divide both sides by 12.
x^{2}+\left(-\frac{10}{12}\right)x=-\frac{4}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}-\frac{5}{6}x=-\frac{4}{12}
Reduce the fraction \frac{-10}{12} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{5}{6}x=-\frac{1}{3}
Reduce the fraction \frac{-4}{12} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{5}{6}x+\left(-\frac{5}{12}\right)^{2}=-\frac{1}{3}+\left(-\frac{5}{12}\right)^{2}
Divide -\frac{5}{6}, the coefficient of the x term, by 2 to get -\frac{5}{12}. Then add the square of -\frac{5}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{6}x+\frac{25}{144}=-\frac{1}{3}+\frac{25}{144}
Square -\frac{5}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{6}x+\frac{25}{144}=-\frac{23}{144}
Add -\frac{1}{3} to \frac{25}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{12}\right)^{2}=-\frac{23}{144}
Factor x^{2}-\frac{5}{6}x+\frac{25}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{12}\right)^{2}}=\sqrt{-\frac{23}{144}}
Take the square root of both sides of the equation.
x-\frac{5}{12}=\frac{\sqrt{23}i}{12} x-\frac{5}{12}=-\frac{\sqrt{23}i}{12}
Simplify.
x=\frac{5+\sqrt{23}i}{12} x=\frac{-\sqrt{23}i+5}{12}
Add \frac{5}{12} to both sides of the equation.