Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\frac{\left(-\frac{4\times 20+1}{20}\right)\left(-125\right)}{\left(-\frac{1}{2}\right)^{3}\left(-10\right)}\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Express \frac{\frac{\left(-\frac{4\times 20+1}{20}\right)\left(-125\right)}{\left(-\frac{1}{2}\right)^{3}}}{-10} as a single fraction.
\frac{\left(-\frac{80+1}{20}\right)\left(-125\right)}{\left(-\frac{1}{2}\right)^{3}\left(-10\right)}\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Multiply 4 and 20 to get 80.
\frac{-\frac{81}{20}\left(-125\right)}{\left(-\frac{1}{2}\right)^{3}\left(-10\right)}\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Add 80 and 1 to get 81.
\frac{\frac{-81\left(-125\right)}{20}}{\left(-\frac{1}{2}\right)^{3}\left(-10\right)}\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Express -\frac{81}{20}\left(-125\right) as a single fraction.
\frac{\frac{10125}{20}}{\left(-\frac{1}{2}\right)^{3}\left(-10\right)}\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Multiply -81 and -125 to get 10125.
\frac{\frac{2025}{4}}{\left(-\frac{1}{2}\right)^{3}\left(-10\right)}\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Reduce the fraction \frac{10125}{20} to lowest terms by extracting and canceling out 5.
\frac{\frac{2025}{4}}{-\frac{1}{8}\left(-10\right)}\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Calculate -\frac{1}{2} to the power of 3 and get -\frac{1}{8}.
\frac{\frac{2025}{4}}{\frac{-\left(-10\right)}{8}}\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Express -\frac{1}{8}\left(-10\right) as a single fraction.
\frac{\frac{2025}{4}}{\frac{10}{8}}\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Multiply -1 and -10 to get 10.
\frac{\frac{2025}{4}}{\frac{5}{4}}\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Reduce the fraction \frac{10}{8} to lowest terms by extracting and canceling out 2.
\frac{2025}{4}\times \frac{4}{5}\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Divide \frac{2025}{4} by \frac{5}{4} by multiplying \frac{2025}{4} by the reciprocal of \frac{5}{4}.
\frac{2025\times 4}{4\times 5}\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Multiply \frac{2025}{4} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{2025}{5}\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Cancel out 4 in both numerator and denominator.
405\left(-\frac{1}{3}\right)^{5}\times 0\times 1^{2}
Divide 2025 by 5 to get 405.
405\left(-\frac{1}{243}\right)\times 0\times 1^{2}
Calculate -\frac{1}{3} to the power of 5 and get -\frac{1}{243}.
\frac{405\left(-1\right)}{243}\times 0\times 1^{2}
Express 405\left(-\frac{1}{243}\right) as a single fraction.
\frac{-405}{243}\times 0\times 1^{2}
Multiply 405 and -1 to get -405.
-\frac{5}{3}\times 0\times 1^{2}
Reduce the fraction \frac{-405}{243} to lowest terms by extracting and canceling out 81.
0\times 1^{2}
Multiply -\frac{5}{3} and 0 to get 0.
0\times 1
Calculate 1 to the power of 2 and get 1.
0
Multiply 0 and 1 to get 0.