Evaluate
-2\left(a-8\right)\left(a-3\right)\left(a+1\right)
Expand
-2a^{3}+20a^{2}-26a-48
Share
Copied to clipboard
\left(-16+2a\right)\left(-a^{2}+2a+3\right)
Calculate 4 to the power of 2 and get 16.
-16\left(-a^{2}\right)-26a-48+2a\left(-a^{2}\right)+4a^{2}
Use the distributive property to multiply -16+2a by -a^{2}+2a+3 and combine like terms.
16a^{2}-26a-48+2a\left(-a^{2}\right)+4a^{2}
Multiply -16 and -1 to get 16.
20a^{2}-26a-48+2a\left(-a^{2}\right)
Combine 16a^{2} and 4a^{2} to get 20a^{2}.
20a^{2}-26a-48+2a^{3}\left(-1\right)
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
20a^{2}-26a-48-2a^{3}
Multiply 2 and -1 to get -2.
\left(-16+2a\right)\left(-a^{2}+2a+3\right)
Calculate 4 to the power of 2 and get 16.
-16\left(-a^{2}\right)-26a-48+2a\left(-a^{2}\right)+4a^{2}
Use the distributive property to multiply -16+2a by -a^{2}+2a+3 and combine like terms.
16a^{2}-26a-48+2a\left(-a^{2}\right)+4a^{2}
Multiply -16 and -1 to get 16.
20a^{2}-26a-48+2a\left(-a^{2}\right)
Combine 16a^{2} and 4a^{2} to get 20a^{2}.
20a^{2}-26a-48+2a^{3}\left(-1\right)
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
20a^{2}-26a-48-2a^{3}
Multiply 2 and -1 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}