( - 3,5 ) + ( - \frac { 4 } { 5 } ) + ( - \frac { 7 } { 4 } ) + ( + \frac { 7 } { 2 } ) + 0,75 + ( - \frac { 7 } { 3 } )
Evaluate
-\frac{62}{15}\approx -4,133333333
Factor
-\frac{62}{15} = -4\frac{2}{15} = -4.133333333333334
Share
Copied to clipboard
-\frac{7}{2}-\frac{4}{5}-\frac{7}{4}+\frac{7}{2}+0,75-\frac{7}{3}
Convert decimal number -3,5 to fraction -\frac{35}{10}. Reduce the fraction -\frac{35}{10} to lowest terms by extracting and canceling out 5.
-\frac{35}{10}-\frac{8}{10}-\frac{7}{4}+\frac{7}{2}+0,75-\frac{7}{3}
Least common multiple of 2 and 5 is 10. Convert -\frac{7}{2} and \frac{4}{5} to fractions with denominator 10.
\frac{-35-8}{10}-\frac{7}{4}+\frac{7}{2}+0,75-\frac{7}{3}
Since -\frac{35}{10} and \frac{8}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{43}{10}-\frac{7}{4}+\frac{7}{2}+0,75-\frac{7}{3}
Subtract 8 from -35 to get -43.
-\frac{86}{20}-\frac{35}{20}+\frac{7}{2}+0,75-\frac{7}{3}
Least common multiple of 10 and 4 is 20. Convert -\frac{43}{10} and \frac{7}{4} to fractions with denominator 20.
\frac{-86-35}{20}+\frac{7}{2}+0,75-\frac{7}{3}
Since -\frac{86}{20} and \frac{35}{20} have the same denominator, subtract them by subtracting their numerators.
-\frac{121}{20}+\frac{7}{2}+0,75-\frac{7}{3}
Subtract 35 from -86 to get -121.
-\frac{121}{20}+\frac{70}{20}+0,75-\frac{7}{3}
Least common multiple of 20 and 2 is 20. Convert -\frac{121}{20} and \frac{7}{2} to fractions with denominator 20.
\frac{-121+70}{20}+0,75-\frac{7}{3}
Since -\frac{121}{20} and \frac{70}{20} have the same denominator, add them by adding their numerators.
-\frac{51}{20}+0,75-\frac{7}{3}
Add -121 and 70 to get -51.
-\frac{51}{20}+\frac{3}{4}-\frac{7}{3}
Convert decimal number 0,75 to fraction \frac{75}{100}. Reduce the fraction \frac{75}{100} to lowest terms by extracting and canceling out 25.
-\frac{51}{20}+\frac{15}{20}-\frac{7}{3}
Least common multiple of 20 and 4 is 20. Convert -\frac{51}{20} and \frac{3}{4} to fractions with denominator 20.
\frac{-51+15}{20}-\frac{7}{3}
Since -\frac{51}{20} and \frac{15}{20} have the same denominator, add them by adding their numerators.
\frac{-36}{20}-\frac{7}{3}
Add -51 and 15 to get -36.
-\frac{9}{5}-\frac{7}{3}
Reduce the fraction \frac{-36}{20} to lowest terms by extracting and canceling out 4.
-\frac{27}{15}-\frac{35}{15}
Least common multiple of 5 and 3 is 15. Convert -\frac{9}{5} and \frac{7}{3} to fractions with denominator 15.
\frac{-27-35}{15}
Since -\frac{27}{15} and \frac{35}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{62}{15}
Subtract 35 from -27 to get -62.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}