Evaluate
-\frac{1}{6}\approx -0.166666667
Factor
-\frac{1}{6} = -0.16666666666666666
Share
Copied to clipboard
\frac{-3}{2}-\left(\frac{2}{3}\right)^{2}\left(-3\right)
Multiply -3 and \frac{1}{2} to get \frac{-3}{2}.
-\frac{3}{2}-\left(\frac{2}{3}\right)^{2}\left(-3\right)
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
-\frac{3}{2}-\frac{4}{9}\left(-3\right)
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
-\frac{3}{2}-\frac{4\left(-3\right)}{9}
Express \frac{4}{9}\left(-3\right) as a single fraction.
-\frac{3}{2}-\frac{-12}{9}
Multiply 4 and -3 to get -12.
-\frac{3}{2}-\left(-\frac{4}{3}\right)
Reduce the fraction \frac{-12}{9} to lowest terms by extracting and canceling out 3.
-\frac{3}{2}+\frac{4}{3}
The opposite of -\frac{4}{3} is \frac{4}{3}.
-\frac{9}{6}+\frac{8}{6}
Least common multiple of 2 and 3 is 6. Convert -\frac{3}{2} and \frac{4}{3} to fractions with denominator 6.
\frac{-9+8}{6}
Since -\frac{9}{6} and \frac{8}{6} have the same denominator, add them by adding their numerators.
-\frac{1}{6}
Add -9 and 8 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}