Evaluate
-\frac{1}{140}\approx -0.007142857
Factor
-\frac{1}{140} = -0.007142857142857143
Share
Copied to clipboard
-3\left(-\frac{1}{7}\right)\times \frac{-3}{12}\times \frac{1}{15}
Reduce the fraction \frac{2}{-14} to lowest terms by extracting and canceling out 2.
\frac{-3\left(-1\right)}{7}\times \frac{-3}{12}\times \frac{1}{15}
Express -3\left(-\frac{1}{7}\right) as a single fraction.
\frac{3}{7}\times \frac{-3}{12}\times \frac{1}{15}
Multiply -3 and -1 to get 3.
\frac{3}{7}\left(-\frac{1}{4}\right)\times \frac{1}{15}
Reduce the fraction \frac{-3}{12} to lowest terms by extracting and canceling out 3.
\frac{3\left(-1\right)}{7\times 4}\times \frac{1}{15}
Multiply \frac{3}{7} times -\frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{-3}{28}\times \frac{1}{15}
Do the multiplications in the fraction \frac{3\left(-1\right)}{7\times 4}.
-\frac{3}{28}\times \frac{1}{15}
Fraction \frac{-3}{28} can be rewritten as -\frac{3}{28} by extracting the negative sign.
\frac{-3}{28\times 15}
Multiply -\frac{3}{28} times \frac{1}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{-3}{420}
Do the multiplications in the fraction \frac{-3}{28\times 15}.
-\frac{1}{140}
Reduce the fraction \frac{-3}{420} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}