Evaluate
-\frac{\sqrt{30}}{2}+6\approx 3.261387212
Share
Copied to clipboard
9-\sqrt{\frac{7\times 2+1}{2}}+\sqrt[3]{-27}
Calculate -3 to the power of 2 and get 9.
9-\sqrt{\frac{14+1}{2}}+\sqrt[3]{-27}
Multiply 7 and 2 to get 14.
9-\sqrt{\frac{15}{2}}+\sqrt[3]{-27}
Add 14 and 1 to get 15.
9-\frac{\sqrt{15}}{\sqrt{2}}+\sqrt[3]{-27}
Rewrite the square root of the division \sqrt{\frac{15}{2}} as the division of square roots \frac{\sqrt{15}}{\sqrt{2}}.
9-\frac{\sqrt{15}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\sqrt[3]{-27}
Rationalize the denominator of \frac{\sqrt{15}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
9-\frac{\sqrt{15}\sqrt{2}}{2}+\sqrt[3]{-27}
The square of \sqrt{2} is 2.
9-\frac{\sqrt{30}}{2}+\sqrt[3]{-27}
To multiply \sqrt{15} and \sqrt{2}, multiply the numbers under the square root.
9-\frac{\sqrt{30}}{2}-3
Calculate \sqrt[3]{-27} and get -3.
6-\frac{\sqrt{30}}{2}
Subtract 3 from 9 to get 6.
\frac{6\times 2}{2}-\frac{\sqrt{30}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6 times \frac{2}{2}.
\frac{6\times 2-\sqrt{30}}{2}
Since \frac{6\times 2}{2} and \frac{\sqrt{30}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{12-\sqrt{30}}{2}
Do the multiplications in 6\times 2-\sqrt{30}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}