Evaluate
-64x^{12}\left(yz\right)^{9}
Expand
-64x^{12}\left(yz\right)^{9}
Share
Copied to clipboard
\left(-2\right)^{3}\left(x^{3}\right)^{3}\left(z^{3}\right)^{3}\times \left(2xy^{3}\right)^{3}
Expand \left(-2x^{3}z^{3}\right)^{3}.
\left(-2\right)^{3}x^{9}\left(z^{3}\right)^{3}\times \left(2xy^{3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\left(-2\right)^{3}x^{9}z^{9}\times \left(2xy^{3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
-8x^{9}z^{9}\times \left(2xy^{3}\right)^{3}
Calculate -2 to the power of 3 and get -8.
-8x^{9}z^{9}\times 2^{3}x^{3}\left(y^{3}\right)^{3}
Expand \left(2xy^{3}\right)^{3}.
-8x^{9}z^{9}\times 2^{3}x^{3}y^{9}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
-8x^{9}z^{9}\times 8x^{3}y^{9}
Calculate 2 to the power of 3 and get 8.
-64x^{9}z^{9}x^{3}y^{9}
Multiply -8 and 8 to get -64.
-64x^{12}z^{9}y^{9}
To multiply powers of the same base, add their exponents. Add 9 and 3 to get 12.
\left(-2\right)^{3}\left(x^{3}\right)^{3}\left(z^{3}\right)^{3}\times \left(2xy^{3}\right)^{3}
Expand \left(-2x^{3}z^{3}\right)^{3}.
\left(-2\right)^{3}x^{9}\left(z^{3}\right)^{3}\times \left(2xy^{3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\left(-2\right)^{3}x^{9}z^{9}\times \left(2xy^{3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
-8x^{9}z^{9}\times \left(2xy^{3}\right)^{3}
Calculate -2 to the power of 3 and get -8.
-8x^{9}z^{9}\times 2^{3}x^{3}\left(y^{3}\right)^{3}
Expand \left(2xy^{3}\right)^{3}.
-8x^{9}z^{9}\times 2^{3}x^{3}y^{9}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
-8x^{9}z^{9}\times 8x^{3}y^{9}
Calculate 2 to the power of 3 and get 8.
-64x^{9}z^{9}x^{3}y^{9}
Multiply -8 and 8 to get -64.
-64x^{12}z^{9}y^{9}
To multiply powers of the same base, add their exponents. Add 9 and 3 to get 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}