Solve for m
m=\frac{\sqrt{13}-5}{6}\approx -0.232408121
m=\frac{-\sqrt{13}-5}{6}\approx -1.434258546
Share
Copied to clipboard
4m^{2}+4m+1-\left(m^{2}-2\right)+m=2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2m-1\right)^{2}.
4m^{2}+4m+1-m^{2}+2+m=2
To find the opposite of m^{2}-2, find the opposite of each term.
3m^{2}+4m+1+2+m=2
Combine 4m^{2} and -m^{2} to get 3m^{2}.
3m^{2}+4m+3+m=2
Add 1 and 2 to get 3.
3m^{2}+5m+3=2
Combine 4m and m to get 5m.
3m^{2}+5m+3-2=0
Subtract 2 from both sides.
3m^{2}+5m+1=0
Subtract 2 from 3 to get 1.
m=\frac{-5±\sqrt{5^{2}-4\times 3}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 5 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-5±\sqrt{25-4\times 3}}{2\times 3}
Square 5.
m=\frac{-5±\sqrt{25-12}}{2\times 3}
Multiply -4 times 3.
m=\frac{-5±\sqrt{13}}{2\times 3}
Add 25 to -12.
m=\frac{-5±\sqrt{13}}{6}
Multiply 2 times 3.
m=\frac{\sqrt{13}-5}{6}
Now solve the equation m=\frac{-5±\sqrt{13}}{6} when ± is plus. Add -5 to \sqrt{13}.
m=\frac{-\sqrt{13}-5}{6}
Now solve the equation m=\frac{-5±\sqrt{13}}{6} when ± is minus. Subtract \sqrt{13} from -5.
m=\frac{\sqrt{13}-5}{6} m=\frac{-\sqrt{13}-5}{6}
The equation is now solved.
4m^{2}+4m+1-\left(m^{2}-2\right)+m=2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2m-1\right)^{2}.
4m^{2}+4m+1-m^{2}+2+m=2
To find the opposite of m^{2}-2, find the opposite of each term.
3m^{2}+4m+1+2+m=2
Combine 4m^{2} and -m^{2} to get 3m^{2}.
3m^{2}+4m+3+m=2
Add 1 and 2 to get 3.
3m^{2}+5m+3=2
Combine 4m and m to get 5m.
3m^{2}+5m=2-3
Subtract 3 from both sides.
3m^{2}+5m=-1
Subtract 3 from 2 to get -1.
\frac{3m^{2}+5m}{3}=-\frac{1}{3}
Divide both sides by 3.
m^{2}+\frac{5}{3}m=-\frac{1}{3}
Dividing by 3 undoes the multiplication by 3.
m^{2}+\frac{5}{3}m+\left(\frac{5}{6}\right)^{2}=-\frac{1}{3}+\left(\frac{5}{6}\right)^{2}
Divide \frac{5}{3}, the coefficient of the x term, by 2 to get \frac{5}{6}. Then add the square of \frac{5}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+\frac{5}{3}m+\frac{25}{36}=-\frac{1}{3}+\frac{25}{36}
Square \frac{5}{6} by squaring both the numerator and the denominator of the fraction.
m^{2}+\frac{5}{3}m+\frac{25}{36}=\frac{13}{36}
Add -\frac{1}{3} to \frac{25}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m+\frac{5}{6}\right)^{2}=\frac{13}{36}
Factor m^{2}+\frac{5}{3}m+\frac{25}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+\frac{5}{6}\right)^{2}}=\sqrt{\frac{13}{36}}
Take the square root of both sides of the equation.
m+\frac{5}{6}=\frac{\sqrt{13}}{6} m+\frac{5}{6}=-\frac{\sqrt{13}}{6}
Simplify.
m=\frac{\sqrt{13}-5}{6} m=\frac{-\sqrt{13}-5}{6}
Subtract \frac{5}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}