Solve for k
k = \frac{\sqrt{22}}{2} \approx 2.34520788
k = -\frac{\sqrt{22}}{2} \approx -2.34520788
Share
Copied to clipboard
4+4k+k^{2}+k^{2}-4k+4+1=20
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2-k\right)^{2}.
4+4k+2k^{2}-4k+4+1=20
Combine k^{2} and k^{2} to get 2k^{2}.
4+2k^{2}+4+1=20
Combine 4k and -4k to get 0.
8+2k^{2}+1=20
Add 4 and 4 to get 8.
9+2k^{2}=20
Add 8 and 1 to get 9.
2k^{2}=20-9
Subtract 9 from both sides.
2k^{2}=11
Subtract 9 from 20 to get 11.
k^{2}=\frac{11}{2}
Divide both sides by 2.
k=\frac{\sqrt{22}}{2} k=-\frac{\sqrt{22}}{2}
Take the square root of both sides of the equation.
4+4k+k^{2}+k^{2}-4k+4+1=20
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2-k\right)^{2}.
4+4k+2k^{2}-4k+4+1=20
Combine k^{2} and k^{2} to get 2k^{2}.
4+2k^{2}+4+1=20
Combine 4k and -4k to get 0.
8+2k^{2}+1=20
Add 4 and 4 to get 8.
9+2k^{2}=20
Add 8 and 1 to get 9.
9+2k^{2}-20=0
Subtract 20 from both sides.
-11+2k^{2}=0
Subtract 20 from 9 to get -11.
2k^{2}-11=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
k=\frac{0±\sqrt{0^{2}-4\times 2\left(-11\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{0±\sqrt{-4\times 2\left(-11\right)}}{2\times 2}
Square 0.
k=\frac{0±\sqrt{-8\left(-11\right)}}{2\times 2}
Multiply -4 times 2.
k=\frac{0±\sqrt{88}}{2\times 2}
Multiply -8 times -11.
k=\frac{0±2\sqrt{22}}{2\times 2}
Take the square root of 88.
k=\frac{0±2\sqrt{22}}{4}
Multiply 2 times 2.
k=\frac{\sqrt{22}}{2}
Now solve the equation k=\frac{0±2\sqrt{22}}{4} when ± is plus.
k=-\frac{\sqrt{22}}{2}
Now solve the equation k=\frac{0±2\sqrt{22}}{4} when ± is minus.
k=\frac{\sqrt{22}}{2} k=-\frac{\sqrt{22}}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}