Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

4+4k+k^{2}+k^{2}-4k+4+1=20
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2-k\right)^{2}.
4+4k+2k^{2}-4k+4+1=20
Combine k^{2} and k^{2} to get 2k^{2}.
4+2k^{2}+4+1=20
Combine 4k and -4k to get 0.
8+2k^{2}+1=20
Add 4 and 4 to get 8.
9+2k^{2}=20
Add 8 and 1 to get 9.
2k^{2}=20-9
Subtract 9 from both sides.
2k^{2}=11
Subtract 9 from 20 to get 11.
k^{2}=\frac{11}{2}
Divide both sides by 2.
k=\frac{\sqrt{22}}{2} k=-\frac{\sqrt{22}}{2}
Take the square root of both sides of the equation.
4+4k+k^{2}+k^{2}-4k+4+1=20
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2-k\right)^{2}.
4+4k+2k^{2}-4k+4+1=20
Combine k^{2} and k^{2} to get 2k^{2}.
4+2k^{2}+4+1=20
Combine 4k and -4k to get 0.
8+2k^{2}+1=20
Add 4 and 4 to get 8.
9+2k^{2}=20
Add 8 and 1 to get 9.
9+2k^{2}-20=0
Subtract 20 from both sides.
-11+2k^{2}=0
Subtract 20 from 9 to get -11.
2k^{2}-11=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
k=\frac{0±\sqrt{0^{2}-4\times 2\left(-11\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{0±\sqrt{-4\times 2\left(-11\right)}}{2\times 2}
Square 0.
k=\frac{0±\sqrt{-8\left(-11\right)}}{2\times 2}
Multiply -4 times 2.
k=\frac{0±\sqrt{88}}{2\times 2}
Multiply -8 times -11.
k=\frac{0±2\sqrt{22}}{2\times 2}
Take the square root of 88.
k=\frac{0±2\sqrt{22}}{4}
Multiply 2 times 2.
k=\frac{\sqrt{22}}{2}
Now solve the equation k=\frac{0±2\sqrt{22}}{4} when ± is plus.
k=-\frac{\sqrt{22}}{2}
Now solve the equation k=\frac{0±2\sqrt{22}}{4} when ± is minus.
k=\frac{\sqrt{22}}{2} k=-\frac{\sqrt{22}}{2}
The equation is now solved.