Solve for x (complex solution)
x=\frac{\left(-2\right)^{p}}{1024}
Solve for x
x=\frac{\left(-2\right)^{p}}{1024}
Denominator(p)\text{bmod}2=1
Solve for p (complex solution)
p=\frac{\ln(-2048x)-\pi i-\ln(2)}{\ln(2)+\pi i}+\frac{2\pi n_{1}i}{\ln(2)+\pi i}
n_{1}\in \mathrm{Z}
x\neq 0
Solve for p
p=\log_{2}\left(-2048x\right)-1
x<0\text{ and }Numerator(\log_{2}\left(-2048x\right))\text{bmod}2=0\text{ and }Denominator(\log_{2}\left(-2048x\right))\text{bmod}2=1
Graph
Share
Copied to clipboard
\left(-2\right)^{11}x=\left(-2\right)^{p+1}
To multiply powers of the same base, add their exponents. Add 4 and 7 to get 11.
-2048x=\left(-2\right)^{p+1}
Calculate -2 to the power of 11 and get -2048.
\frac{-2048x}{-2048}=\frac{\left(-2\right)^{p+1}}{-2048}
Divide both sides by -2048.
x=\frac{\left(-2\right)^{p+1}}{-2048}
Dividing by -2048 undoes the multiplication by -2048.
x=\frac{\left(-2\right)^{p}}{1024}
Divide \left(-2\right)^{1+p} by -2048.
\left(-2\right)^{11}x=\left(-2\right)^{p+1}
To multiply powers of the same base, add their exponents. Add 4 and 7 to get 11.
-2048x=\left(-2\right)^{p+1}
Calculate -2 to the power of 11 and get -2048.
\frac{-2048x}{-2048}=\frac{\left(-2\right)^{p+1}}{-2048}
Divide both sides by -2048.
x=\frac{\left(-2\right)^{p+1}}{-2048}
Dividing by -2048 undoes the multiplication by -2048.
x=\frac{\left(-2\right)^{p}}{1024}
Divide \left(-2\right)^{1+p} by -2048.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}