Solve for x
x=\frac{\sqrt{177}-7}{8}\approx 0.788016837
x=\frac{-\sqrt{177}-7}{8}\approx -2.538016837
Graph
Share
Copied to clipboard
-4+4x^{2}+7x=4
Subtract 2 from -2 to get -4.
-4+4x^{2}+7x-4=0
Subtract 4 from both sides.
-8+4x^{2}+7x=0
Subtract 4 from -4 to get -8.
4x^{2}+7x-8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{7^{2}-4\times 4\left(-8\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 7 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 4\left(-8\right)}}{2\times 4}
Square 7.
x=\frac{-7±\sqrt{49-16\left(-8\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-7±\sqrt{49+128}}{2\times 4}
Multiply -16 times -8.
x=\frac{-7±\sqrt{177}}{2\times 4}
Add 49 to 128.
x=\frac{-7±\sqrt{177}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{177}-7}{8}
Now solve the equation x=\frac{-7±\sqrt{177}}{8} when ± is plus. Add -7 to \sqrt{177}.
x=\frac{-\sqrt{177}-7}{8}
Now solve the equation x=\frac{-7±\sqrt{177}}{8} when ± is minus. Subtract \sqrt{177} from -7.
x=\frac{\sqrt{177}-7}{8} x=\frac{-\sqrt{177}-7}{8}
The equation is now solved.
-4+4x^{2}+7x=4
Subtract 2 from -2 to get -4.
4x^{2}+7x=4+4
Add 4 to both sides.
4x^{2}+7x=8
Add 4 and 4 to get 8.
\frac{4x^{2}+7x}{4}=\frac{8}{4}
Divide both sides by 4.
x^{2}+\frac{7}{4}x=\frac{8}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{7}{4}x=2
Divide 8 by 4.
x^{2}+\frac{7}{4}x+\left(\frac{7}{8}\right)^{2}=2+\left(\frac{7}{8}\right)^{2}
Divide \frac{7}{4}, the coefficient of the x term, by 2 to get \frac{7}{8}. Then add the square of \frac{7}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{4}x+\frac{49}{64}=2+\frac{49}{64}
Square \frac{7}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{4}x+\frac{49}{64}=\frac{177}{64}
Add 2 to \frac{49}{64}.
\left(x+\frac{7}{8}\right)^{2}=\frac{177}{64}
Factor x^{2}+\frac{7}{4}x+\frac{49}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{8}\right)^{2}}=\sqrt{\frac{177}{64}}
Take the square root of both sides of the equation.
x+\frac{7}{8}=\frac{\sqrt{177}}{8} x+\frac{7}{8}=-\frac{\sqrt{177}}{8}
Simplify.
x=\frac{\sqrt{177}-7}{8} x=\frac{-\sqrt{177}-7}{8}
Subtract \frac{7}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}