Solve for x
x=-\frac{3}{28}\approx -0.107142857
Graph
Share
Copied to clipboard
\frac{\left(-\frac{6+1}{3}\right)x-\frac{1}{2}}{-\frac{1\times 2+1}{2}}=\frac{-\frac{1}{3}}{-2}
Multiply 2 and 3 to get 6.
\frac{-\frac{7}{3}x-\frac{1}{2}}{-\frac{1\times 2+1}{2}}=\frac{-\frac{1}{3}}{-2}
Add 6 and 1 to get 7.
\frac{-\frac{7}{3}x-\frac{1}{2}}{-\frac{2+1}{2}}=\frac{-\frac{1}{3}}{-2}
Multiply 1 and 2 to get 2.
\frac{-\frac{7}{3}x-\frac{1}{2}}{-\frac{3}{2}}=\frac{-\frac{1}{3}}{-2}
Add 2 and 1 to get 3.
\frac{-\frac{7}{3}x-\frac{1}{2}}{-\frac{3}{2}}=\frac{-1}{3\left(-2\right)}
Express \frac{-\frac{1}{3}}{-2} as a single fraction.
\frac{-\frac{7}{3}x-\frac{1}{2}}{-\frac{3}{2}}=\frac{-1}{-6}
Multiply 3 and -2 to get -6.
\frac{-\frac{7}{3}x-\frac{1}{2}}{-\frac{3}{2}}=\frac{1}{6}
Fraction \frac{-1}{-6} can be simplified to \frac{1}{6} by removing the negative sign from both the numerator and the denominator.
\frac{-\frac{7}{3}x}{-\frac{3}{2}}+\frac{-\frac{1}{2}}{-\frac{3}{2}}=\frac{1}{6}
Divide each term of -\frac{7}{3}x-\frac{1}{2} by -\frac{3}{2} to get \frac{-\frac{7}{3}x}{-\frac{3}{2}}+\frac{-\frac{1}{2}}{-\frac{3}{2}}.
\frac{14}{9}x+\frac{-\frac{1}{2}}{-\frac{3}{2}}=\frac{1}{6}
Divide -\frac{7}{3}x by -\frac{3}{2} to get \frac{14}{9}x.
\frac{14}{9}x-\frac{1}{2}\left(-\frac{2}{3}\right)=\frac{1}{6}
Divide -\frac{1}{2} by -\frac{3}{2} by multiplying -\frac{1}{2} by the reciprocal of -\frac{3}{2}.
\frac{14}{9}x+\frac{-\left(-2\right)}{2\times 3}=\frac{1}{6}
Multiply -\frac{1}{2} times -\frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{14}{9}x+\frac{2}{6}=\frac{1}{6}
Do the multiplications in the fraction \frac{-\left(-2\right)}{2\times 3}.
\frac{14}{9}x+\frac{1}{3}=\frac{1}{6}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{14}{9}x=\frac{1}{6}-\frac{1}{3}
Subtract \frac{1}{3} from both sides.
\frac{14}{9}x=\frac{1}{6}-\frac{2}{6}
Least common multiple of 6 and 3 is 6. Convert \frac{1}{6} and \frac{1}{3} to fractions with denominator 6.
\frac{14}{9}x=\frac{1-2}{6}
Since \frac{1}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{14}{9}x=-\frac{1}{6}
Subtract 2 from 1 to get -1.
x=-\frac{1}{6}\times \frac{9}{14}
Multiply both sides by \frac{9}{14}, the reciprocal of \frac{14}{9}.
x=\frac{-9}{6\times 14}
Multiply -\frac{1}{6} times \frac{9}{14} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-9}{84}
Do the multiplications in the fraction \frac{-9}{6\times 14}.
x=-\frac{3}{28}
Reduce the fraction \frac{-9}{84} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}