Solve for b
b=\frac{1}{9}\approx 0.111111111
Share
Copied to clipboard
-92b+20+48b^{2}-48b^{2}+83b-19=0
Use the distributive property to multiply -2+8b by 6b-10 and combine like terms.
-92b+20+83b-19=0
Combine 48b^{2} and -48b^{2} to get 0.
-9b+20-19=0
Combine -92b and 83b to get -9b.
-9b+1=0
Subtract 19 from 20 to get 1.
-9b=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
b=\frac{-1}{-9}
Divide both sides by -9.
b=\frac{1}{9}
Fraction \frac{-1}{-9} can be simplified to \frac{1}{9} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}