Evaluate
-\frac{9}{2}=-4.5
Factor
-\frac{9}{2} = -4\frac{1}{2} = -4.5
Share
Copied to clipboard
\frac{-\frac{8}{4}+\frac{5}{4}}{\frac{1}{2}-\frac{1}{3}}
Convert -2 to fraction -\frac{8}{4}.
\frac{\frac{-8+5}{4}}{\frac{1}{2}-\frac{1}{3}}
Since -\frac{8}{4} and \frac{5}{4} have the same denominator, add them by adding their numerators.
\frac{-\frac{3}{4}}{\frac{1}{2}-\frac{1}{3}}
Add -8 and 5 to get -3.
\frac{-\frac{3}{4}}{\frac{3}{6}-\frac{2}{6}}
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{-\frac{3}{4}}{\frac{3-2}{6}}
Since \frac{3}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{3}{4}}{\frac{1}{6}}
Subtract 2 from 3 to get 1.
-\frac{3}{4}\times 6
Divide -\frac{3}{4} by \frac{1}{6} by multiplying -\frac{3}{4} by the reciprocal of \frac{1}{6}.
\frac{-3\times 6}{4}
Express -\frac{3}{4}\times 6 as a single fraction.
\frac{-18}{4}
Multiply -3 and 6 to get -18.
-\frac{9}{2}
Reduce the fraction \frac{-18}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}