Evaluate (complex solution)
2\sqrt{2}i\left(x+2\right)^{2}x^{3}
Evaluate
\text{Indeterminate}
Share
Copied to clipboard
\left(x^{2}+4x+4\right)x^{3}\sqrt{-8}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-x-2\right)^{2}.
\left(x^{2}+4x+4\right)x^{3}\times \left(2i\right)\sqrt{2}
Factor -8=\left(2i\right)^{2}\times 2. Rewrite the square root of the product \sqrt{\left(2i\right)^{2}\times 2} as the product of square roots \sqrt{\left(2i\right)^{2}}\sqrt{2}. Take the square root of \left(2i\right)^{2}.
\left(x^{5}+4x^{4}+4x^{3}\right)\times \left(2i\right)\sqrt{2}
Use the distributive property to multiply x^{2}+4x+4 by x^{3}.
\left(2ix^{5}+8ix^{4}+8ix^{3}\right)\sqrt{2}
Use the distributive property to multiply x^{5}+4x^{4}+4x^{3} by 2i.
2ix^{5}\sqrt{2}+8ix^{4}\sqrt{2}+8ix^{3}\sqrt{2}
Use the distributive property to multiply 2ix^{5}+8ix^{4}+8ix^{3} by \sqrt{2}.
\left(x^{2}+4x+4\right)x^{3}\sqrt{-8}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-x-2\right)^{2}.
\left(x^{5}+4x^{4}+4x^{3}\right)\sqrt{-8}
Use the distributive property to multiply x^{2}+4x+4 by x^{3}.
x^{5}\sqrt{-8}+4x^{4}\sqrt{-8}+4x^{3}\sqrt{-8}
Use the distributive property to multiply x^{5}+4x^{4}+4x^{3} by \sqrt{-8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}