Evaluate
-\frac{1}{2}=-0.5
Factor
-\frac{1}{2} = -0.5
Share
Copied to clipboard
1-\frac{1-\frac{1}{2}}{3}|1-\left(-2\right)^{3}|
Calculate -1 to the power of 2020 and get 1.
1-\frac{\frac{2}{2}-\frac{1}{2}}{3}|1-\left(-2\right)^{3}|
Convert 1 to fraction \frac{2}{2}.
1-\frac{\frac{2-1}{2}}{3}|1-\left(-2\right)^{3}|
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
1-\frac{\frac{1}{2}}{3}|1-\left(-2\right)^{3}|
Subtract 1 from 2 to get 1.
1-\frac{1}{2\times 3}|1-\left(-2\right)^{3}|
Express \frac{\frac{1}{2}}{3} as a single fraction.
1-\frac{1}{6}|1-\left(-2\right)^{3}|
Multiply 2 and 3 to get 6.
1-\frac{1}{6}|1-\left(-8\right)|
Calculate -2 to the power of 3 and get -8.
1-\frac{1}{6}|1+8|
The opposite of -8 is 8.
1-\frac{1}{6}|9|
Add 1 and 8 to get 9.
1-\frac{1}{6}\times 9
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of 9 is 9.
1-\frac{9}{6}
Multiply \frac{1}{6} and 9 to get \frac{9}{6}.
1-\frac{3}{2}
Reduce the fraction \frac{9}{6} to lowest terms by extracting and canceling out 3.
\frac{2}{2}-\frac{3}{2}
Convert 1 to fraction \frac{2}{2}.
\frac{2-3}{2}
Since \frac{2}{2} and \frac{3}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{2}
Subtract 3 from 2 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}