Solve for c
c=-5
c=15
Quiz
Polynomial
5 problems similar to:
( - ( 6 c + 10 ) ) ^ { 2 } - 4 ( 10 ) ( c ^ { 2 } + 2 c - 5 ) = 0
Share
Copied to clipboard
\left(-6c-10\right)^{2}-4\times 10\left(c^{2}+2c-5\right)=0
To find the opposite of 6c+10, find the opposite of each term.
36c^{2}+120c+100-4\times 10\left(c^{2}+2c-5\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-6c-10\right)^{2}.
36c^{2}+120c+100-40\left(c^{2}+2c-5\right)=0
Multiply 4 and 10 to get 40.
36c^{2}+120c+100-40c^{2}-80c+200=0
Use the distributive property to multiply -40 by c^{2}+2c-5.
-4c^{2}+120c+100-80c+200=0
Combine 36c^{2} and -40c^{2} to get -4c^{2}.
-4c^{2}+40c+100+200=0
Combine 120c and -80c to get 40c.
-4c^{2}+40c+300=0
Add 100 and 200 to get 300.
-c^{2}+10c+75=0
Divide both sides by 4.
a+b=10 ab=-75=-75
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -c^{2}+ac+bc+75. To find a and b, set up a system to be solved.
-1,75 -3,25 -5,15
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -75.
-1+75=74 -3+25=22 -5+15=10
Calculate the sum for each pair.
a=15 b=-5
The solution is the pair that gives sum 10.
\left(-c^{2}+15c\right)+\left(-5c+75\right)
Rewrite -c^{2}+10c+75 as \left(-c^{2}+15c\right)+\left(-5c+75\right).
-c\left(c-15\right)-5\left(c-15\right)
Factor out -c in the first and -5 in the second group.
\left(c-15\right)\left(-c-5\right)
Factor out common term c-15 by using distributive property.
c=15 c=-5
To find equation solutions, solve c-15=0 and -c-5=0.
\left(-6c-10\right)^{2}-4\times 10\left(c^{2}+2c-5\right)=0
To find the opposite of 6c+10, find the opposite of each term.
36c^{2}+120c+100-4\times 10\left(c^{2}+2c-5\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-6c-10\right)^{2}.
36c^{2}+120c+100-40\left(c^{2}+2c-5\right)=0
Multiply 4 and 10 to get 40.
36c^{2}+120c+100-40c^{2}-80c+200=0
Use the distributive property to multiply -40 by c^{2}+2c-5.
-4c^{2}+120c+100-80c+200=0
Combine 36c^{2} and -40c^{2} to get -4c^{2}.
-4c^{2}+40c+100+200=0
Combine 120c and -80c to get 40c.
-4c^{2}+40c+300=0
Add 100 and 200 to get 300.
c=\frac{-40±\sqrt{40^{2}-4\left(-4\right)\times 300}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 40 for b, and 300 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-40±\sqrt{1600-4\left(-4\right)\times 300}}{2\left(-4\right)}
Square 40.
c=\frac{-40±\sqrt{1600+16\times 300}}{2\left(-4\right)}
Multiply -4 times -4.
c=\frac{-40±\sqrt{1600+4800}}{2\left(-4\right)}
Multiply 16 times 300.
c=\frac{-40±\sqrt{6400}}{2\left(-4\right)}
Add 1600 to 4800.
c=\frac{-40±80}{2\left(-4\right)}
Take the square root of 6400.
c=\frac{-40±80}{-8}
Multiply 2 times -4.
c=\frac{40}{-8}
Now solve the equation c=\frac{-40±80}{-8} when ± is plus. Add -40 to 80.
c=-5
Divide 40 by -8.
c=-\frac{120}{-8}
Now solve the equation c=\frac{-40±80}{-8} when ± is minus. Subtract 80 from -40.
c=15
Divide -120 by -8.
c=-5 c=15
The equation is now solved.
\left(-6c-10\right)^{2}-4\times 10\left(c^{2}+2c-5\right)=0
To find the opposite of 6c+10, find the opposite of each term.
36c^{2}+120c+100-4\times 10\left(c^{2}+2c-5\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-6c-10\right)^{2}.
36c^{2}+120c+100-40\left(c^{2}+2c-5\right)=0
Multiply 4 and 10 to get 40.
36c^{2}+120c+100-40c^{2}-80c+200=0
Use the distributive property to multiply -40 by c^{2}+2c-5.
-4c^{2}+120c+100-80c+200=0
Combine 36c^{2} and -40c^{2} to get -4c^{2}.
-4c^{2}+40c+100+200=0
Combine 120c and -80c to get 40c.
-4c^{2}+40c+300=0
Add 100 and 200 to get 300.
-4c^{2}+40c=-300
Subtract 300 from both sides. Anything subtracted from zero gives its negation.
\frac{-4c^{2}+40c}{-4}=-\frac{300}{-4}
Divide both sides by -4.
c^{2}+\frac{40}{-4}c=-\frac{300}{-4}
Dividing by -4 undoes the multiplication by -4.
c^{2}-10c=-\frac{300}{-4}
Divide 40 by -4.
c^{2}-10c=75
Divide -300 by -4.
c^{2}-10c+\left(-5\right)^{2}=75+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
c^{2}-10c+25=75+25
Square -5.
c^{2}-10c+25=100
Add 75 to 25.
\left(c-5\right)^{2}=100
Factor c^{2}-10c+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c-5\right)^{2}}=\sqrt{100}
Take the square root of both sides of the equation.
c-5=10 c-5=-10
Simplify.
c=15 c=-5
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}