Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{7}\right)^{2}+\frac{\sqrt{\left(\frac{7}{10}\right)^{2}}}{\left(\sqrt{0.1}\right)^{2}}-\sqrt{121}
Calculate -\sqrt{7} to the power of 2 and get \left(\sqrt{7}\right)^{2}.
\left(\sqrt{7}\right)^{2}+\frac{\sqrt{\frac{49}{100}}}{\left(\sqrt{0.1}\right)^{2}}-\sqrt{121}
Calculate \frac{7}{10} to the power of 2 and get \frac{49}{100}.
\left(\sqrt{7}\right)^{2}+\frac{\frac{7}{10}}{\left(\sqrt{0.1}\right)^{2}}-\sqrt{121}
Rewrite the square root of the division \frac{49}{100} as the division of square roots \frac{\sqrt{49}}{\sqrt{100}}. Take the square root of both numerator and denominator.
\left(\sqrt{7}\right)^{2}+\frac{\frac{7}{10}}{0.1}-\sqrt{121}
The square of \sqrt{0.1} is 0.1.
\left(\sqrt{7}\right)^{2}+\frac{7}{10\times 0.1}-\sqrt{121}
Express \frac{\frac{7}{10}}{0.1} as a single fraction.
\left(\sqrt{7}\right)^{2}+\frac{7}{1}-\sqrt{121}
Multiply 10 and 0.1 to get 1.
\left(\sqrt{7}\right)^{2}+7-\sqrt{121}
Divide 7 by 1 to get 7.
\left(\sqrt{7}\right)^{2}+7-11
Calculate the square root of 121 and get 11.
\left(\sqrt{7}\right)^{2}-4
Subtract 11 from 7 to get -4.
7-4
The square of \sqrt{7} is 7.
3
Subtract 4 from 7 to get 3.