Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-\sqrt{14}\right)\sqrt{21}}{\left(\sqrt{21}\right)^{2}}\sqrt{75}
Rationalize the denominator of \frac{-\sqrt{14}}{\sqrt{21}} by multiplying numerator and denominator by \sqrt{21}.
\frac{\left(-\sqrt{14}\right)\sqrt{21}}{21}\sqrt{75}
The square of \sqrt{21} is 21.
\frac{\left(-\sqrt{14}\right)\sqrt{21}}{21}\times 5\sqrt{3}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\frac{\left(-\sqrt{14}\right)\sqrt{21}\times 5}{21}\sqrt{3}
Express \frac{\left(-\sqrt{14}\right)\sqrt{21}}{21}\times 5 as a single fraction.
\frac{\left(-\sqrt{14}\right)\sqrt{21}\times 5\sqrt{3}}{21}
Express \frac{\left(-\sqrt{14}\right)\sqrt{21}\times 5}{21}\sqrt{3} as a single fraction.
\frac{\left(-\sqrt{14}\right)\sqrt{3}\sqrt{7}\times 5\sqrt{3}}{21}
Factor 21=3\times 7. Rewrite the square root of the product \sqrt{3\times 7} as the product of square roots \sqrt{3}\sqrt{7}.
\frac{\left(-\sqrt{14}\right)\times 3\times 5\sqrt{7}}{21}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{\left(-\sqrt{14}\right)\times 15\sqrt{7}}{21}
Multiply 3 and 5 to get 15.
\left(-\sqrt{14}\right)\times \frac{5}{7}\sqrt{7}
Divide \left(-\sqrt{14}\right)\times 15\sqrt{7} by 21 to get \left(-\sqrt{14}\right)\times \frac{5}{7}\sqrt{7}.
-\frac{5}{7}\sqrt{14}\sqrt{7}
Multiply -1 and \frac{5}{7} to get -\frac{5}{7}.
-\frac{5}{7}\sqrt{7}\sqrt{2}\sqrt{7}
Factor 14=7\times 2. Rewrite the square root of the product \sqrt{7\times 2} as the product of square roots \sqrt{7}\sqrt{2}.
-\frac{5}{7}\times 7\sqrt{2}
Multiply \sqrt{7} and \sqrt{7} to get 7.
-5\sqrt{2}
Cancel out 7 and 7.