Evaluate
-\frac{b^{3}}{16}
Expand
-\frac{b^{3}}{16}
Share
Copied to clipboard
\frac{\left(\frac{a^{3}}{2b}\right)^{2}}{\left(-\frac{a^{2}}{b}\right)^{3}}\times \left(\frac{b}{2}\right)^{2}
Calculate -\frac{a^{3}}{2b} to the power of 2 and get \left(\frac{a^{3}}{2b}\right)^{2}.
\frac{\frac{\left(a^{3}\right)^{2}}{\left(2b\right)^{2}}}{\left(-\frac{a^{2}}{b}\right)^{3}}\times \left(\frac{b}{2}\right)^{2}
To raise \frac{a^{3}}{2b} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(a^{3}\right)^{2}}{\left(2b\right)^{2}}}{\left(-\frac{a^{2}}{b}\right)^{3}}\times \frac{b^{2}}{2^{2}}
To raise \frac{b}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{a^{6}}{\left(2b\right)^{2}}}{\left(-\frac{a^{2}}{b}\right)^{3}}\times \frac{b^{2}}{2^{2}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{a^{6}}{\left(2b\right)^{2}\left(-\frac{a^{2}}{b}\right)^{3}}\times \frac{b^{2}}{2^{2}}
Express \frac{\frac{a^{6}}{\left(2b\right)^{2}}}{\left(-\frac{a^{2}}{b}\right)^{3}} as a single fraction.
\frac{a^{6}}{2^{2}b^{2}\left(-\frac{a^{2}}{b}\right)^{3}}\times \frac{b^{2}}{2^{2}}
Expand \left(2b\right)^{2}.
\frac{a^{6}}{4b^{2}\left(-\frac{a^{2}}{b}\right)^{3}}\times \frac{b^{2}}{2^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{a^{6}}{4b^{2}\left(-\frac{a^{2}}{b}\right)^{3}}\times \frac{b^{2}}{4}
Calculate 2 to the power of 2 and get 4.
\frac{a^{6}}{4b^{2}\left(-1\right)^{3}\times \left(\frac{a^{2}}{b}\right)^{3}}\times \frac{b^{2}}{4}
Expand \left(-\frac{a^{2}}{b}\right)^{3}.
\frac{a^{6}}{4b^{2}\left(-1\right)\times \left(\frac{a^{2}}{b}\right)^{3}}\times \frac{b^{2}}{4}
Calculate -1 to the power of 3 and get -1.
\frac{a^{6}}{4b^{2}\left(-1\right)\times \frac{\left(a^{2}\right)^{3}}{b^{3}}}\times \frac{b^{2}}{4}
To raise \frac{a^{2}}{b} to a power, raise both numerator and denominator to the power and then divide.
\frac{a^{6}}{-4b^{2}\times \frac{\left(a^{2}\right)^{3}}{b^{3}}}\times \frac{b^{2}}{4}
Multiply 4 and -1 to get -4.
\frac{a^{6}}{-4b^{2}\times \frac{a^{6}}{b^{3}}}\times \frac{b^{2}}{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{a^{6}}{\frac{-4a^{6}}{b^{3}}b^{2}}\times \frac{b^{2}}{4}
Express -4\times \frac{a^{6}}{b^{3}} as a single fraction.
\frac{a^{6}}{\frac{-4a^{6}b^{2}}{b^{3}}}\times \frac{b^{2}}{4}
Express \frac{-4a^{6}}{b^{3}}b^{2} as a single fraction.
\frac{a^{6}}{\frac{-4a^{6}}{b}}\times \frac{b^{2}}{4}
Cancel out b^{2} in both numerator and denominator.
\frac{a^{6}b}{-4a^{6}}\times \frac{b^{2}}{4}
Divide a^{6} by \frac{-4a^{6}}{b} by multiplying a^{6} by the reciprocal of \frac{-4a^{6}}{b}.
\frac{b}{-4}\times \frac{b^{2}}{4}
Cancel out a^{6} in both numerator and denominator.
\frac{bb^{2}}{-4\times 4}
Multiply \frac{b}{-4} times \frac{b^{2}}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{b^{3}}{-4\times 4}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{b^{3}}{-16}
Multiply -4 and 4 to get -16.
\frac{\left(\frac{a^{3}}{2b}\right)^{2}}{\left(-\frac{a^{2}}{b}\right)^{3}}\times \left(\frac{b}{2}\right)^{2}
Calculate -\frac{a^{3}}{2b} to the power of 2 and get \left(\frac{a^{3}}{2b}\right)^{2}.
\frac{\frac{\left(a^{3}\right)^{2}}{\left(2b\right)^{2}}}{\left(-\frac{a^{2}}{b}\right)^{3}}\times \left(\frac{b}{2}\right)^{2}
To raise \frac{a^{3}}{2b} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(a^{3}\right)^{2}}{\left(2b\right)^{2}}}{\left(-\frac{a^{2}}{b}\right)^{3}}\times \frac{b^{2}}{2^{2}}
To raise \frac{b}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{a^{6}}{\left(2b\right)^{2}}}{\left(-\frac{a^{2}}{b}\right)^{3}}\times \frac{b^{2}}{2^{2}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{a^{6}}{\left(2b\right)^{2}\left(-\frac{a^{2}}{b}\right)^{3}}\times \frac{b^{2}}{2^{2}}
Express \frac{\frac{a^{6}}{\left(2b\right)^{2}}}{\left(-\frac{a^{2}}{b}\right)^{3}} as a single fraction.
\frac{a^{6}}{2^{2}b^{2}\left(-\frac{a^{2}}{b}\right)^{3}}\times \frac{b^{2}}{2^{2}}
Expand \left(2b\right)^{2}.
\frac{a^{6}}{4b^{2}\left(-\frac{a^{2}}{b}\right)^{3}}\times \frac{b^{2}}{2^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{a^{6}}{4b^{2}\left(-\frac{a^{2}}{b}\right)^{3}}\times \frac{b^{2}}{4}
Calculate 2 to the power of 2 and get 4.
\frac{a^{6}}{4b^{2}\left(-1\right)^{3}\times \left(\frac{a^{2}}{b}\right)^{3}}\times \frac{b^{2}}{4}
Expand \left(-\frac{a^{2}}{b}\right)^{3}.
\frac{a^{6}}{4b^{2}\left(-1\right)\times \left(\frac{a^{2}}{b}\right)^{3}}\times \frac{b^{2}}{4}
Calculate -1 to the power of 3 and get -1.
\frac{a^{6}}{4b^{2}\left(-1\right)\times \frac{\left(a^{2}\right)^{3}}{b^{3}}}\times \frac{b^{2}}{4}
To raise \frac{a^{2}}{b} to a power, raise both numerator and denominator to the power and then divide.
\frac{a^{6}}{-4b^{2}\times \frac{\left(a^{2}\right)^{3}}{b^{3}}}\times \frac{b^{2}}{4}
Multiply 4 and -1 to get -4.
\frac{a^{6}}{-4b^{2}\times \frac{a^{6}}{b^{3}}}\times \frac{b^{2}}{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{a^{6}}{\frac{-4a^{6}}{b^{3}}b^{2}}\times \frac{b^{2}}{4}
Express -4\times \frac{a^{6}}{b^{3}} as a single fraction.
\frac{a^{6}}{\frac{-4a^{6}b^{2}}{b^{3}}}\times \frac{b^{2}}{4}
Express \frac{-4a^{6}}{b^{3}}b^{2} as a single fraction.
\frac{a^{6}}{\frac{-4a^{6}}{b}}\times \frac{b^{2}}{4}
Cancel out b^{2} in both numerator and denominator.
\frac{a^{6}b}{-4a^{6}}\times \frac{b^{2}}{4}
Divide a^{6} by \frac{-4a^{6}}{b} by multiplying a^{6} by the reciprocal of \frac{-4a^{6}}{b}.
\frac{b}{-4}\times \frac{b^{2}}{4}
Cancel out a^{6} in both numerator and denominator.
\frac{bb^{2}}{-4\times 4}
Multiply \frac{b}{-4} times \frac{b^{2}}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{b^{3}}{-4\times 4}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{b^{3}}{-16}
Multiply -4 and 4 to get -16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}