Evaluate
\frac{20j}{31}-\frac{33k}{62}+\frac{13}{62}i
Expand
\frac{20j}{31}-\frac{33k}{62}+\frac{13}{62}i
Share
Copied to clipboard
\left(-\frac{142}{62}+\frac{155}{62}\right)i+\left(\frac{82}{31}-2\right)j-\left(\frac{32}{31}-\frac{1}{2}\right)k
Least common multiple of 31 and 2 is 62. Convert -\frac{71}{31} and \frac{5}{2} to fractions with denominator 62.
\frac{-142+155}{62}i+\left(\frac{82}{31}-2\right)j-\left(\frac{32}{31}-\frac{1}{2}\right)k
Since -\frac{142}{62} and \frac{155}{62} have the same denominator, add them by adding their numerators.
\frac{13}{62}i+\left(\frac{82}{31}-2\right)j-\left(\frac{32}{31}-\frac{1}{2}\right)k
Add -142 and 155 to get 13.
\frac{13}{62}i+\left(\frac{82}{31}-\frac{62}{31}\right)j-\left(\frac{32}{31}-\frac{1}{2}\right)k
Convert 2 to fraction \frac{62}{31}.
\frac{13}{62}i+\frac{82-62}{31}j-\left(\frac{32}{31}-\frac{1}{2}\right)k
Since \frac{82}{31} and \frac{62}{31} have the same denominator, subtract them by subtracting their numerators.
\frac{13}{62}i+\frac{20}{31}j-\left(\frac{32}{31}-\frac{1}{2}\right)k
Subtract 62 from 82 to get 20.
\frac{13}{62}i+\frac{20}{31}j-\left(\frac{64}{62}-\frac{31}{62}\right)k
Least common multiple of 31 and 2 is 62. Convert \frac{32}{31} and \frac{1}{2} to fractions with denominator 62.
\frac{13}{62}i+\frac{20}{31}j-\frac{64-31}{62}k
Since \frac{64}{62} and \frac{31}{62} have the same denominator, subtract them by subtracting their numerators.
\frac{13}{62}i+\frac{20}{31}j-\frac{33}{62}k
Subtract 31 from 64 to get 33.
\left(-\frac{142}{62}+\frac{155}{62}\right)i+\left(\frac{82}{31}-2\right)j-\left(\frac{32}{31}-\frac{1}{2}\right)k
Least common multiple of 31 and 2 is 62. Convert -\frac{71}{31} and \frac{5}{2} to fractions with denominator 62.
\frac{-142+155}{62}i+\left(\frac{82}{31}-2\right)j-\left(\frac{32}{31}-\frac{1}{2}\right)k
Since -\frac{142}{62} and \frac{155}{62} have the same denominator, add them by adding their numerators.
\frac{13}{62}i+\left(\frac{82}{31}-2\right)j-\left(\frac{32}{31}-\frac{1}{2}\right)k
Add -142 and 155 to get 13.
\frac{13}{62}i+\left(\frac{82}{31}-\frac{62}{31}\right)j-\left(\frac{32}{31}-\frac{1}{2}\right)k
Convert 2 to fraction \frac{62}{31}.
\frac{13}{62}i+\frac{82-62}{31}j-\left(\frac{32}{31}-\frac{1}{2}\right)k
Since \frac{82}{31} and \frac{62}{31} have the same denominator, subtract them by subtracting their numerators.
\frac{13}{62}i+\frac{20}{31}j-\left(\frac{32}{31}-\frac{1}{2}\right)k
Subtract 62 from 82 to get 20.
\frac{13}{62}i+\frac{20}{31}j-\left(\frac{64}{62}-\frac{31}{62}\right)k
Least common multiple of 31 and 2 is 62. Convert \frac{32}{31} and \frac{1}{2} to fractions with denominator 62.
\frac{13}{62}i+\frac{20}{31}j-\frac{64-31}{62}k
Since \frac{64}{62} and \frac{31}{62} have the same denominator, subtract them by subtracting their numerators.
\frac{13}{62}i+\frac{20}{31}j-\frac{33}{62}k
Subtract 31 from 64 to get 33.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}