Solve for K
K = \frac{59}{43} = 1\frac{16}{43} \approx 1.372093023
Share
Copied to clipboard
-\frac{14}{10}-\frac{45}{10}=K\left(-\frac{9}{5}-\frac{5}{2}\right)
Least common multiple of 5 and 2 is 10. Convert -\frac{7}{5} and \frac{9}{2} to fractions with denominator 10.
\frac{-14-45}{10}=K\left(-\frac{9}{5}-\frac{5}{2}\right)
Since -\frac{14}{10} and \frac{45}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{59}{10}=K\left(-\frac{9}{5}-\frac{5}{2}\right)
Subtract 45 from -14 to get -59.
-\frac{59}{10}=K\left(-\frac{18}{10}-\frac{25}{10}\right)
Least common multiple of 5 and 2 is 10. Convert -\frac{9}{5} and \frac{5}{2} to fractions with denominator 10.
-\frac{59}{10}=K\times \frac{-18-25}{10}
Since -\frac{18}{10} and \frac{25}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{59}{10}=K\left(-\frac{43}{10}\right)
Subtract 25 from -18 to get -43.
K\left(-\frac{43}{10}\right)=-\frac{59}{10}
Swap sides so that all variable terms are on the left hand side.
K=-\frac{59}{10}\left(-\frac{10}{43}\right)
Multiply both sides by -\frac{10}{43}, the reciprocal of -\frac{43}{10}.
K=\frac{-59\left(-10\right)}{10\times 43}
Multiply -\frac{59}{10} times -\frac{10}{43} by multiplying numerator times numerator and denominator times denominator.
K=\frac{590}{430}
Do the multiplications in the fraction \frac{-59\left(-10\right)}{10\times 43}.
K=\frac{59}{43}
Reduce the fraction \frac{590}{430} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}