Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(-1\right)^{-2}\times \left(\frac{4a}{3b^{-3}}\right)^{-2}
Expand \left(-\frac{4a}{3b^{-3}}\right)^{-2}.
1\times \left(\frac{4a}{3b^{-3}}\right)^{-2}
Calculate -1 to the power of -2 and get 1.
1\times \frac{\left(4a\right)^{-2}}{\left(3b^{-3}\right)^{-2}}
To raise \frac{4a}{3b^{-3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(4a\right)^{-2}}{\left(3b^{-3}\right)^{-2}}
Express 1\times \frac{\left(4a\right)^{-2}}{\left(3b^{-3}\right)^{-2}} as a single fraction.
\frac{4^{-2}a^{-2}}{\left(3b^{-3}\right)^{-2}}
Expand \left(4a\right)^{-2}.
\frac{\frac{1}{16}a^{-2}}{\left(3b^{-3}\right)^{-2}}
Calculate 4 to the power of -2 and get \frac{1}{16}.
\frac{\frac{1}{16}a^{-2}}{3^{-2}\left(b^{-3}\right)^{-2}}
Expand \left(3b^{-3}\right)^{-2}.
\frac{\frac{1}{16}a^{-2}}{3^{-2}b^{6}}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
\frac{\frac{1}{16}a^{-2}}{\frac{1}{9}b^{6}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\left(-1\right)^{-2}\times \left(\frac{4a}{3b^{-3}}\right)^{-2}
Expand \left(-\frac{4a}{3b^{-3}}\right)^{-2}.
1\times \left(\frac{4a}{3b^{-3}}\right)^{-2}
Calculate -1 to the power of -2 and get 1.
1\times \frac{\left(4a\right)^{-2}}{\left(3b^{-3}\right)^{-2}}
To raise \frac{4a}{3b^{-3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(4a\right)^{-2}}{\left(3b^{-3}\right)^{-2}}
Express 1\times \frac{\left(4a\right)^{-2}}{\left(3b^{-3}\right)^{-2}} as a single fraction.
\frac{4^{-2}a^{-2}}{\left(3b^{-3}\right)^{-2}}
Expand \left(4a\right)^{-2}.
\frac{\frac{1}{16}a^{-2}}{\left(3b^{-3}\right)^{-2}}
Calculate 4 to the power of -2 and get \frac{1}{16}.
\frac{\frac{1}{16}a^{-2}}{3^{-2}\left(b^{-3}\right)^{-2}}
Expand \left(3b^{-3}\right)^{-2}.
\frac{\frac{1}{16}a^{-2}}{3^{-2}b^{6}}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
\frac{\frac{1}{16}a^{-2}}{\frac{1}{9}b^{6}}
Calculate 3 to the power of -2 and get \frac{1}{9}.