Solve for q
q=-\frac{20}{-16t^{4}-9t^{2}+60t-100}
-16t^{4}-\left(3t-10\right)^{2}\neq 0
Share
Copied to clipboard
5q\left(-\frac{3}{5}t+2\right)^{2}+5q\times \left(\frac{4}{5}t^{2}\right)^{2}=4
Variable q cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5q.
5q\left(\frac{9}{25}t^{2}-\frac{12}{5}t+4\right)+5q\times \left(\frac{4}{5}t^{2}\right)^{2}=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-\frac{3}{5}t+2\right)^{2}.
\frac{9}{5}t^{2}q-12tq+20q+5q\times \left(\frac{4}{5}t^{2}\right)^{2}=4
Use the distributive property to multiply 5q by \frac{9}{25}t^{2}-\frac{12}{5}t+4.
\frac{9}{5}t^{2}q-12tq+20q+5q\times \left(\frac{4}{5}\right)^{2}\left(t^{2}\right)^{2}=4
Expand \left(\frac{4}{5}t^{2}\right)^{2}.
\frac{9}{5}t^{2}q-12tq+20q+5q\times \left(\frac{4}{5}\right)^{2}t^{4}=4
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{9}{5}t^{2}q-12tq+20q+5q\times \frac{16}{25}t^{4}=4
Calculate \frac{4}{5} to the power of 2 and get \frac{16}{25}.
\frac{9}{5}t^{2}q-12tq+20q+\frac{16}{5}qt^{4}=4
Multiply 5 and \frac{16}{25} to get \frac{16}{5}.
\left(\frac{9}{5}t^{2}-12t+20+\frac{16}{5}t^{4}\right)q=4
Combine all terms containing q.
\left(\frac{16t^{4}}{5}+\frac{9t^{2}}{5}-12t+20\right)q=4
The equation is in standard form.
\frac{\left(\frac{16t^{4}}{5}+\frac{9t^{2}}{5}-12t+20\right)q}{\frac{16t^{4}}{5}+\frac{9t^{2}}{5}-12t+20}=\frac{4}{\frac{16t^{4}}{5}+\frac{9t^{2}}{5}-12t+20}
Divide both sides by \frac{9}{5}t^{2}-12t+20+\frac{16}{5}t^{4}.
q=\frac{4}{\frac{16t^{4}}{5}+\frac{9t^{2}}{5}-12t+20}
Dividing by \frac{9}{5}t^{2}-12t+20+\frac{16}{5}t^{4} undoes the multiplication by \frac{9}{5}t^{2}-12t+20+\frac{16}{5}t^{4}.
q=\frac{20}{16t^{4}+9t^{2}-60t+100}
Divide 4 by \frac{9}{5}t^{2}-12t+20+\frac{16}{5}t^{4}.
q=\frac{20}{16t^{4}+9t^{2}-60t+100}\text{, }q\neq 0
Variable q cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}