Skip to main content
Solve for q
Tick mark Image

Similar Problems from Web Search

Share

5q\left(-\frac{3}{5}t+2\right)^{2}+5q\times \left(\frac{4}{5}t^{2}\right)^{2}=4
Variable q cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5q.
5q\left(\frac{9}{25}t^{2}-\frac{12}{5}t+4\right)+5q\times \left(\frac{4}{5}t^{2}\right)^{2}=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-\frac{3}{5}t+2\right)^{2}.
\frac{9}{5}t^{2}q-12tq+20q+5q\times \left(\frac{4}{5}t^{2}\right)^{2}=4
Use the distributive property to multiply 5q by \frac{9}{25}t^{2}-\frac{12}{5}t+4.
\frac{9}{5}t^{2}q-12tq+20q+5q\times \left(\frac{4}{5}\right)^{2}\left(t^{2}\right)^{2}=4
Expand \left(\frac{4}{5}t^{2}\right)^{2}.
\frac{9}{5}t^{2}q-12tq+20q+5q\times \left(\frac{4}{5}\right)^{2}t^{4}=4
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{9}{5}t^{2}q-12tq+20q+5q\times \frac{16}{25}t^{4}=4
Calculate \frac{4}{5} to the power of 2 and get \frac{16}{25}.
\frac{9}{5}t^{2}q-12tq+20q+\frac{16}{5}qt^{4}=4
Multiply 5 and \frac{16}{25} to get \frac{16}{5}.
\left(\frac{9}{5}t^{2}-12t+20+\frac{16}{5}t^{4}\right)q=4
Combine all terms containing q.
\left(\frac{16t^{4}}{5}+\frac{9t^{2}}{5}-12t+20\right)q=4
The equation is in standard form.
\frac{\left(\frac{16t^{4}}{5}+\frac{9t^{2}}{5}-12t+20\right)q}{\frac{16t^{4}}{5}+\frac{9t^{2}}{5}-12t+20}=\frac{4}{\frac{16t^{4}}{5}+\frac{9t^{2}}{5}-12t+20}
Divide both sides by \frac{9}{5}t^{2}-12t+20+\frac{16}{5}t^{4}.
q=\frac{4}{\frac{16t^{4}}{5}+\frac{9t^{2}}{5}-12t+20}
Dividing by \frac{9}{5}t^{2}-12t+20+\frac{16}{5}t^{4} undoes the multiplication by \frac{9}{5}t^{2}-12t+20+\frac{16}{5}t^{4}.
q=\frac{20}{16t^{4}+9t^{2}-60t+100}
Divide 4 by \frac{9}{5}t^{2}-12t+20+\frac{16}{5}t^{4}.
q=\frac{20}{16t^{4}+9t^{2}-60t+100}\text{, }q\neq 0
Variable q cannot be equal to 0.