Evaluate
\frac{36\sqrt{69}}{23}\approx 13.001672133
Share
Copied to clipboard
6\times \frac{-3}{4\left(-\frac{\sqrt{23}}{8}\right)}\sqrt{3}
Express \frac{-\frac{3}{4}}{-\frac{\sqrt{23}}{8}} as a single fraction.
6\times \frac{-3}{\frac{\sqrt{23}}{-2}}\sqrt{3}
Cancel out 8, the greatest common factor in 4 and 8.
6\times \frac{-3\left(-2\right)}{\sqrt{23}}\sqrt{3}
Divide -3 by \frac{\sqrt{23}}{-2} by multiplying -3 by the reciprocal of \frac{\sqrt{23}}{-2}.
6\times \frac{-3\left(-2\right)\sqrt{23}}{\left(\sqrt{23}\right)^{2}}\sqrt{3}
Rationalize the denominator of \frac{-3\left(-2\right)}{\sqrt{23}} by multiplying numerator and denominator by \sqrt{23}.
6\times \frac{-3\left(-2\right)\sqrt{23}}{23}\sqrt{3}
The square of \sqrt{23} is 23.
6\times \frac{6\sqrt{23}}{23}\sqrt{3}
Multiply -3 and -2 to get 6.
\frac{6\times 6\sqrt{23}}{23}\sqrt{3}
Express 6\times \frac{6\sqrt{23}}{23} as a single fraction.
\frac{6\times 6\sqrt{23}\sqrt{3}}{23}
Express \frac{6\times 6\sqrt{23}}{23}\sqrt{3} as a single fraction.
\frac{36\sqrt{23}\sqrt{3}}{23}
Multiply 6 and 6 to get 36.
\frac{36\sqrt{69}}{23}
To multiply \sqrt{23} and \sqrt{3}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}