Evaluate
-\frac{128}{3}\approx -42.666666667
Factor
-\frac{128}{3} = -42\frac{2}{3} = -42.666666666666664
Share
Copied to clipboard
-\frac{2}{3}\times 8\times 8
Divide -\frac{2}{3} by \frac{1}{8} by multiplying -\frac{2}{3} by the reciprocal of \frac{1}{8}.
\frac{-2\times 8}{3}\times 8
Express -\frac{2}{3}\times 8 as a single fraction.
\frac{-16}{3}\times 8
Multiply -2 and 8 to get -16.
-\frac{16}{3}\times 8
Fraction \frac{-16}{3} can be rewritten as -\frac{16}{3} by extracting the negative sign.
\frac{-16\times 8}{3}
Express -\frac{16}{3}\times 8 as a single fraction.
\frac{-128}{3}
Multiply -16 and 8 to get -128.
-\frac{128}{3}
Fraction \frac{-128}{3} can be rewritten as -\frac{128}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}