Evaluate
\frac{3}{8}=0.375
Factor
\frac{3}{2 ^ {3}} = 0.375
Share
Copied to clipboard
\frac{-\frac{1}{64}\left(-6^{2}\right)}{\frac{1\times 2+1}{2}}
Calculate -\frac{1}{4} to the power of 3 and get -\frac{1}{64}.
\frac{-\frac{1}{64}\left(-36\right)}{\frac{1\times 2+1}{2}}
Calculate 6 to the power of 2 and get 36.
\frac{\frac{-\left(-36\right)}{64}}{\frac{1\times 2+1}{2}}
Express -\frac{1}{64}\left(-36\right) as a single fraction.
\frac{\frac{36}{64}}{\frac{1\times 2+1}{2}}
Multiply -1 and -36 to get 36.
\frac{\frac{9}{16}}{\frac{1\times 2+1}{2}}
Reduce the fraction \frac{36}{64} to lowest terms by extracting and canceling out 4.
\frac{\frac{9}{16}}{\frac{2+1}{2}}
Multiply 1 and 2 to get 2.
\frac{\frac{9}{16}}{\frac{3}{2}}
Add 2 and 1 to get 3.
\frac{9}{16}\times \frac{2}{3}
Divide \frac{9}{16} by \frac{3}{2} by multiplying \frac{9}{16} by the reciprocal of \frac{3}{2}.
\frac{9\times 2}{16\times 3}
Multiply \frac{9}{16} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{18}{48}
Do the multiplications in the fraction \frac{9\times 2}{16\times 3}.
\frac{3}{8}
Reduce the fraction \frac{18}{48} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}