( - \frac { 1 } { 3 } ) ^ { 2 } - 0,17 + \frac { 3,2 \cdot 10 ^ { 11 } } { 1,6 \cdot 10 ^ { 12 } } \cdot [ ( \frac { 7 } { 9 } ) ^ { 13 } ] ^ { 0 } \cdot \frac { \frac { 1 } { 5 } } { 1 - \frac { 4 } { 5 } } =
Evaluate
\frac{127}{900}\approx 0,141111111
Factor
\frac{127}{2 ^ {2} \cdot 3 ^ {2} \cdot 5 ^ {2}} = 0.1411111111111111
Share
Copied to clipboard
\left(-\frac{1}{3}\right)^{2}-0,17+\frac{3,2\times 10^{11}}{1,6\times 10^{12}}\times \left(\frac{7}{9}\right)^{0}\times \frac{\frac{1}{5}}{1-\frac{4}{5}}
To raise a power to another power, multiply the exponents. Multiply 13 and 0 to get 0.
\frac{1}{9}-0,17+\frac{3,2\times 10^{11}}{1,6\times 10^{12}}\times \left(\frac{7}{9}\right)^{0}\times \frac{\frac{1}{5}}{1-\frac{4}{5}}
Calculate -\frac{1}{3} to the power of 2 and get \frac{1}{9}.
-\frac{53}{900}+\frac{3,2\times 10^{11}}{1,6\times 10^{12}}\times \left(\frac{7}{9}\right)^{0}\times \frac{\frac{1}{5}}{1-\frac{4}{5}}
Subtract 0,17 from \frac{1}{9} to get -\frac{53}{900}.
-\frac{53}{900}+\frac{3,2}{1,6\times 10}\times \left(\frac{7}{9}\right)^{0}\times \frac{\frac{1}{5}}{1-\frac{4}{5}}
Cancel out 10^{11} in both numerator and denominator.
-\frac{53}{900}+\frac{3,2}{16}\times \left(\frac{7}{9}\right)^{0}\times \frac{\frac{1}{5}}{1-\frac{4}{5}}
Multiply 1,6 and 10 to get 16.
-\frac{53}{900}+\frac{32}{160}\times \left(\frac{7}{9}\right)^{0}\times \frac{\frac{1}{5}}{1-\frac{4}{5}}
Expand \frac{3,2}{16} by multiplying both numerator and the denominator by 10.
-\frac{53}{900}+\frac{1}{5}\times \left(\frac{7}{9}\right)^{0}\times \frac{\frac{1}{5}}{1-\frac{4}{5}}
Reduce the fraction \frac{32}{160} to lowest terms by extracting and canceling out 32.
-\frac{53}{900}+\frac{1}{5}\times 1\times \frac{\frac{1}{5}}{1-\frac{4}{5}}
Calculate \frac{7}{9} to the power of 0 and get 1.
-\frac{53}{900}+\frac{1}{5}\times \frac{\frac{1}{5}}{1-\frac{4}{5}}
Multiply \frac{1}{5} and 1 to get \frac{1}{5}.
-\frac{53}{900}+\frac{1}{5}\times \frac{\frac{1}{5}}{\frac{1}{5}}
Subtract \frac{4}{5} from 1 to get \frac{1}{5}.
-\frac{53}{900}+\frac{1}{5}\times 1
Divide \frac{1}{5} by \frac{1}{5} to get 1.
-\frac{53}{900}+\frac{1}{5}
Multiply \frac{1}{5} and 1 to get \frac{1}{5}.
\frac{127}{900}
Add -\frac{53}{900} and \frac{1}{5} to get \frac{127}{900}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}