Evaluate
-\frac{\sqrt{2}}{4}-\frac{1}{7}\approx -0.496410533
Factor
\frac{-7 \sqrt{2} - 4}{28} = -0.49641053345041664
Share
Copied to clipboard
\frac{\left(-\frac{1}{2}+\frac{5}{3}\right)^{-1}}{\frac{6}{1}}-\sqrt{1-\frac{7}{8}}+\frac{2}{1}\left(-\frac{7}{1}\right)^{-1}
Divide 1 by 1 to get 1.
\frac{\left(\frac{7}{6}\right)^{-1}}{\frac{6}{1}}-\sqrt{1-\frac{7}{8}}+\frac{2}{1}\left(-\frac{7}{1}\right)^{-1}
Add -\frac{1}{2} and \frac{5}{3} to get \frac{7}{6}.
\frac{\frac{6}{7}}{\frac{6}{1}}-\sqrt{1-\frac{7}{8}}+\frac{2}{1}\left(-\frac{7}{1}\right)^{-1}
Calculate \frac{7}{6} to the power of -1 and get \frac{6}{7}.
\frac{\frac{6}{7}}{6}-\sqrt{1-\frac{7}{8}}+\frac{2}{1}\left(-\frac{7}{1}\right)^{-1}
Anything divided by one gives itself.
\frac{6}{7\times 6}-\sqrt{1-\frac{7}{8}}+\frac{2}{1}\left(-\frac{7}{1}\right)^{-1}
Express \frac{\frac{6}{7}}{6} as a single fraction.
\frac{1}{7}-\sqrt{1-\frac{7}{8}}+\frac{2}{1}\left(-\frac{7}{1}\right)^{-1}
Cancel out 6 in both numerator and denominator.
\frac{1}{7}-\sqrt{\frac{1}{8}}+\frac{2}{1}\left(-\frac{7}{1}\right)^{-1}
Subtract \frac{7}{8} from 1 to get \frac{1}{8}.
\frac{1}{7}-\frac{\sqrt{1}}{\sqrt{8}}+\frac{2}{1}\left(-\frac{7}{1}\right)^{-1}
Rewrite the square root of the division \sqrt{\frac{1}{8}} as the division of square roots \frac{\sqrt{1}}{\sqrt{8}}.
\frac{1}{7}-\frac{1}{\sqrt{8}}+\frac{2}{1}\left(-\frac{7}{1}\right)^{-1}
Calculate the square root of 1 and get 1.
\frac{1}{7}-\frac{1}{2\sqrt{2}}+\frac{2}{1}\left(-\frac{7}{1}\right)^{-1}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{1}{7}-\frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}+\frac{2}{1}\left(-\frac{7}{1}\right)^{-1}
Rationalize the denominator of \frac{1}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{1}{7}-\frac{\sqrt{2}}{2\times 2}+\frac{2}{1}\left(-\frac{7}{1}\right)^{-1}
The square of \sqrt{2} is 2.
\frac{1}{7}-\frac{\sqrt{2}}{4}+\frac{2}{1}\left(-\frac{7}{1}\right)^{-1}
Multiply 2 and 2 to get 4.
\frac{1}{7}-\frac{\sqrt{2}}{4}+2\left(-\frac{7}{1}\right)^{-1}
Anything divided by one gives itself.
\frac{1}{7}-\frac{\sqrt{2}}{4}+2\left(-7\right)^{-1}
Anything divided by one gives itself.
\frac{1}{7}-\frac{\sqrt{2}}{4}+2\left(-\frac{1}{7}\right)
Calculate -7 to the power of -1 and get -\frac{1}{7}.
\frac{1}{7}-\frac{\sqrt{2}}{4}-\frac{2}{7}
Multiply 2 and -\frac{1}{7} to get -\frac{2}{7}.
-\frac{1}{7}-\frac{\sqrt{2}}{4}
Subtract \frac{2}{7} from \frac{1}{7} to get -\frac{1}{7}.
-\frac{4}{28}-\frac{7\sqrt{2}}{28}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and 4 is 28. Multiply -\frac{1}{7} times \frac{4}{4}. Multiply \frac{\sqrt{2}}{4} times \frac{7}{7}.
\frac{-4-7\sqrt{2}}{28}
Since -\frac{4}{28} and \frac{7\sqrt{2}}{28} have the same denominator, subtract them by subtracting their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}