Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-\frac{1}{2}+\frac{5}{3}\right)^{-1}}{\frac{6}{1}}-\sqrt{1-\frac{7}{8}}+\frac{2}{1}\left(-\frac{7}{1}\right)^{-1}
Divide 1 by 1 to get 1.
\frac{\left(\frac{7}{6}\right)^{-1}}{\frac{6}{1}}-\sqrt{1-\frac{7}{8}}+\frac{2}{1}\left(-\frac{7}{1}\right)^{-1}
Add -\frac{1}{2} and \frac{5}{3} to get \frac{7}{6}.
\frac{\frac{6}{7}}{\frac{6}{1}}-\sqrt{1-\frac{7}{8}}+\frac{2}{1}\left(-\frac{7}{1}\right)^{-1}
Calculate \frac{7}{6} to the power of -1 and get \frac{6}{7}.
\frac{\frac{6}{7}}{6}-\sqrt{1-\frac{7}{8}}+\frac{2}{1}\left(-\frac{7}{1}\right)^{-1}
Anything divided by one gives itself.
\frac{6}{7\times 6}-\sqrt{1-\frac{7}{8}}+\frac{2}{1}\left(-\frac{7}{1}\right)^{-1}
Express \frac{\frac{6}{7}}{6} as a single fraction.
\frac{1}{7}-\sqrt{1-\frac{7}{8}}+\frac{2}{1}\left(-\frac{7}{1}\right)^{-1}
Cancel out 6 in both numerator and denominator.
\frac{1}{7}-\sqrt{\frac{1}{8}}+\frac{2}{1}\left(-\frac{7}{1}\right)^{-1}
Subtract \frac{7}{8} from 1 to get \frac{1}{8}.
\frac{1}{7}-\frac{\sqrt{1}}{\sqrt{8}}+\frac{2}{1}\left(-\frac{7}{1}\right)^{-1}
Rewrite the square root of the division \sqrt{\frac{1}{8}} as the division of square roots \frac{\sqrt{1}}{\sqrt{8}}.
\frac{1}{7}-\frac{1}{\sqrt{8}}+\frac{2}{1}\left(-\frac{7}{1}\right)^{-1}
Calculate the square root of 1 and get 1.
\frac{1}{7}-\frac{1}{2\sqrt{2}}+\frac{2}{1}\left(-\frac{7}{1}\right)^{-1}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{1}{7}-\frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}+\frac{2}{1}\left(-\frac{7}{1}\right)^{-1}
Rationalize the denominator of \frac{1}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{1}{7}-\frac{\sqrt{2}}{2\times 2}+\frac{2}{1}\left(-\frac{7}{1}\right)^{-1}
The square of \sqrt{2} is 2.
\frac{1}{7}-\frac{\sqrt{2}}{4}+\frac{2}{1}\left(-\frac{7}{1}\right)^{-1}
Multiply 2 and 2 to get 4.
\frac{1}{7}-\frac{\sqrt{2}}{4}+2\left(-\frac{7}{1}\right)^{-1}
Anything divided by one gives itself.
\frac{1}{7}-\frac{\sqrt{2}}{4}+2\left(-7\right)^{-1}
Anything divided by one gives itself.
\frac{1}{7}-\frac{\sqrt{2}}{4}+2\left(-\frac{1}{7}\right)
Calculate -7 to the power of -1 and get -\frac{1}{7}.
\frac{1}{7}-\frac{\sqrt{2}}{4}-\frac{2}{7}
Multiply 2 and -\frac{1}{7} to get -\frac{2}{7}.
-\frac{1}{7}-\frac{\sqrt{2}}{4}
Subtract \frac{2}{7} from \frac{1}{7} to get -\frac{1}{7}.
-\frac{4}{28}-\frac{7\sqrt{2}}{28}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and 4 is 28. Multiply -\frac{1}{7} times \frac{4}{4}. Multiply \frac{\sqrt{2}}{4} times \frac{7}{7}.
\frac{-4-7\sqrt{2}}{28}
Since -\frac{4}{28} and \frac{7\sqrt{2}}{28} have the same denominator, subtract them by subtracting their numerators.