Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

5\left(9+6\sqrt{190}+\left(\sqrt{190}\right)^{2}+\left(3+\sqrt{4}\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\sqrt{190}\right)^{2}.
5\left(9+6\sqrt{190}+190+\left(3+\sqrt{4}\right)^{2}\right)
The square of \sqrt{190} is 190.
5\left(199+6\sqrt{190}+\left(3+\sqrt{4}\right)^{2}\right)
Add 9 and 190 to get 199.
5\left(199+6\sqrt{190}+\left(3+2\right)^{2}\right)
Calculate the square root of 4 and get 2.
5\left(199+6\sqrt{190}+5^{2}\right)
Add 3 and 2 to get 5.
5\left(199+6\sqrt{190}+25\right)
Calculate 5 to the power of 2 and get 25.
5\left(224+6\sqrt{190}\right)
Add 199 and 25 to get 224.
1120+30\sqrt{190}
Use the distributive property to multiply 5 by 224+6\sqrt{190}.
5\left(9+6\sqrt{190}+\left(\sqrt{190}\right)^{2}+\left(3+\sqrt{4}\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\sqrt{190}\right)^{2}.
5\left(9+6\sqrt{190}+190+\left(3+\sqrt{4}\right)^{2}\right)
The square of \sqrt{190} is 190.
5\left(199+6\sqrt{190}+\left(3+\sqrt{4}\right)^{2}\right)
Add 9 and 190 to get 199.
5\left(199+6\sqrt{190}+\left(3+2\right)^{2}\right)
Calculate the square root of 4 and get 2.
5\left(199+6\sqrt{190}+5^{2}\right)
Add 3 and 2 to get 5.
5\left(199+6\sqrt{190}+25\right)
Calculate 5 to the power of 2 and get 25.
5\left(224+6\sqrt{190}\right)
Add 199 and 25 to get 224.
1120+30\sqrt{190}
Use the distributive property to multiply 5 by 224+6\sqrt{190}.