Evaluate
\frac{17}{8}=2.125
Factor
\frac{17}{2 ^ {3}} = 2\frac{1}{8} = 2.125
Share
Copied to clipboard
\frac{\left(-\frac{1}{4}\right)^{2}+\left(2-\frac{1}{2}\right)^{4}\left(1-\frac{5}{9}\right)^{2}}{\frac{\left(\frac{17}{2}\right)^{4}}{\left(\frac{17}{2}\right)^{3}}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 1 from 3 to get 2.
\frac{\left(-\frac{1}{4}\right)^{2}+\left(2-\frac{1}{2}\right)^{4}\left(1-\frac{5}{9}\right)^{2}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 3 from 4 to get 1.
\frac{\frac{1}{16}+\left(2-\frac{1}{2}\right)^{4}\left(1-\frac{5}{9}\right)^{2}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Calculate -\frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{\frac{1}{16}+\left(\frac{3}{2}\right)^{4}\left(1-\frac{5}{9}\right)^{2}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Subtract \frac{1}{2} from 2 to get \frac{3}{2}.
\frac{\frac{1}{16}+\frac{81}{16}\left(1-\frac{5}{9}\right)^{2}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Calculate \frac{3}{2} to the power of 4 and get \frac{81}{16}.
\frac{\frac{1}{16}+\frac{81}{16}\times \left(\frac{4}{9}\right)^{2}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Subtract \frac{5}{9} from 1 to get \frac{4}{9}.
\frac{\frac{1}{16}+\frac{81}{16}\times \frac{16}{81}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Calculate \frac{4}{9} to the power of 2 and get \frac{16}{81}.
\frac{\frac{1}{16}+1}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Multiply \frac{81}{16} and \frac{16}{81} to get 1.
\frac{\frac{17}{16}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Add \frac{1}{16} and 1 to get \frac{17}{16}.
\frac{\frac{17}{16}}{\frac{17}{2}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Calculate \frac{17}{2} to the power of 1 and get \frac{17}{2}.
\frac{\frac{17}{16}}{\frac{17}{2}+\frac{3}{2}\times 1-1+\frac{1}{4}}\times \frac{37}{2}
Calculate -1 to the power of 2 and get 1.
\frac{\frac{17}{16}}{\frac{17}{2}+\frac{3}{2}-1+\frac{1}{4}}\times \frac{37}{2}
Multiply \frac{3}{2} and 1 to get \frac{3}{2}.
\frac{\frac{17}{16}}{10-1+\frac{1}{4}}\times \frac{37}{2}
Add \frac{17}{2} and \frac{3}{2} to get 10.
\frac{\frac{17}{16}}{9+\frac{1}{4}}\times \frac{37}{2}
Subtract 1 from 10 to get 9.
\frac{\frac{17}{16}}{\frac{37}{4}}\times \frac{37}{2}
Add 9 and \frac{1}{4} to get \frac{37}{4}.
\frac{17}{16}\times \frac{4}{37}\times \frac{37}{2}
Divide \frac{17}{16} by \frac{37}{4} by multiplying \frac{17}{16} by the reciprocal of \frac{37}{4}.
\frac{17}{148}\times \frac{37}{2}
Multiply \frac{17}{16} and \frac{4}{37} to get \frac{17}{148}.
\frac{17}{8}
Multiply \frac{17}{148} and \frac{37}{2} to get \frac{17}{8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}