Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(2\sqrt{8114}+1\right)^{2}
Factor 32456=2^{2}\times 8114. Rewrite the square root of the product \sqrt{2^{2}\times 8114} as the product of square roots \sqrt{2^{2}}\sqrt{8114}. Take the square root of 2^{2}.
4\left(\sqrt{8114}\right)^{2}+4\sqrt{8114}+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{8114}+1\right)^{2}.
4\times 8114+4\sqrt{8114}+1
The square of \sqrt{8114} is 8114.
32456+4\sqrt{8114}+1
Multiply 4 and 8114 to get 32456.
32457+4\sqrt{8114}
Add 32456 and 1 to get 32457.
\left(2\sqrt{8114}+1\right)^{2}
Factor 32456=2^{2}\times 8114. Rewrite the square root of the product \sqrt{2^{2}\times 8114} as the product of square roots \sqrt{2^{2}}\sqrt{8114}. Take the square root of 2^{2}.
4\left(\sqrt{8114}\right)^{2}+4\sqrt{8114}+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{8114}+1\right)^{2}.
4\times 8114+4\sqrt{8114}+1
The square of \sqrt{8114} is 8114.
32456+4\sqrt{8114}+1
Multiply 4 and 8114 to get 32456.
32457+4\sqrt{8114}
Add 32456 and 1 to get 32457.