Evaluate
\frac{88}{81}\approx 1.086419753
Factor
\frac{2 ^ {3} \cdot 11}{3 ^ {4}} = 1\frac{7}{81} = 1.0864197530864197
Share
Copied to clipboard
\left(\frac{2}{3}\right)^{4}+\left(\frac{2}{3}\right)^{2}\times 2
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{16}{81}+\left(\frac{2}{3}\right)^{2}\times 2
Calculate \frac{2}{3} to the power of 4 and get \frac{16}{81}.
\frac{16}{81}+\frac{4}{9}\times 2
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{16}{81}+\frac{4\times 2}{9}
Express \frac{4}{9}\times 2 as a single fraction.
\frac{16}{81}+\frac{8}{9}
Multiply 4 and 2 to get 8.
\frac{16}{81}+\frac{72}{81}
Least common multiple of 81 and 9 is 81. Convert \frac{16}{81} and \frac{8}{9} to fractions with denominator 81.
\frac{16+72}{81}
Since \frac{16}{81} and \frac{72}{81} have the same denominator, add them by adding their numerators.
\frac{88}{81}
Add 16 and 72 to get 88.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}